system's picture
system HF staff
Commit From AutoTrain
5ad5390
|
raw
history blame
1.47 kB
metadata
tags: autotrain
language: en
widget:
  - text: I love AutoTrain 🤗
datasets:
  - Danitg95/autotrain-data-kaggle-effective-arguments
co2_eq_emissions: 5.2497206864306065

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 1086739296
  • CO2 Emissions (in grams): 5.2497206864306065

Validation Metrics

  • Loss: 0.744236171245575
  • Accuracy: 0.6719238613188308
  • Macro F1: 0.5450301061253738
  • Micro F1: 0.6719238613188308
  • Weighted F1: 0.6349879540623229
  • Macro Precision: 0.6691326843926052
  • Micro Precision: 0.6719238613188308
  • Weighted Precision: 0.6706209016443158
  • Macro Recall: 0.5426627824078865
  • Micro Recall: 0.6719238613188308
  • Weighted Recall: 0.6719238613188308

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Danitg95/autotrain-kaggle-effective-arguments-1086739296

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("Danitg95/autotrain-kaggle-effective-arguments-1086739296", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("Danitg95/autotrain-kaggle-effective-arguments-1086739296", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)