DashReza7's picture
Add new SentenceTransformer model.
1e9d84a verified
metadata
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:410745
  - loss:ContrastiveLoss
widget:
  - source_sentence: وینچ
    sentences:
      - >-
        ترقه شکلاتی ( هفت ترقه ) ناریه پارس درجه 1 بسته 15 عددی ترقه شکلاتی (
        هفت ترقه ) ناریه پارس درجه 1 بسته 15 عددی 10عدد ناریه ترقه شکلاتی هفت
        ترقه بار تازه بدون رطوبت وخرابی مارک معتبر نورافشانی
      - پارچه میکرو کجراه
      - >-
        Car winch-1500LBS-KARA وینچ خودرو آفرود ۶۸۰ کیلوگرم کارا ۱۵۰۰lbs وینچ
        خودرویی (جلو ماشینی) 1500LBS کارا (KARA)
  - source_sentence: ' وسپا '
    sentences:
      - پولوشرت زرد وسپا
      - دوچرخه بند سقفی  لیفان X70 ایکس 70 آلومینیومی طرح منابو
      - >-
        دوچرخه ویوا Oxygen سایز 26 دوچرخه 26 ويوا OXYGEN دوچرخه کوهستان ویوا مدل
        OXYGEN سایز 26
  - source_sentence: دوچرخه المپیا سایز 27 5
    sentences:
      - "دوچرخه شهری المپیا کد 16220 سایز 16 دوچرخه شهری المپیا\_کد 16220 سایز 16 دوچرخه المپیا کد 16220 سایز 16 - OLYMPIA"
      - لامپ اس ام دی خودرو مدل 8B بسته 2 عددی
      - قیمت کمپرس سنج موتور
  - source_sentence: دچرخه ی
    sentences:
      - هیدروفیشیال ۷ کاره نیوفیس پلاس متور سنگین ۲۰۲۲
      - جامدادی کیوت
      - جعبه ی کادو ی رنگی
  - source_sentence: هایومکس
    sentences:
      - انگشتر حدید صینی کد2439
      - ژل هایومکس ولومایزر 2 سی سی
      - >-
        دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل
        P-CA501-2
model-index:
  - name: >-
      SentenceTransformer based on
      sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 0.8531738206358597
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.763870358467102
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9032999224561303
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7447167634963989
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.8649689236015621
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9451857194374323
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9354580013152192
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.8179627073336401
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 17.24372100830078
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.8831898479427548
            name: Dot F1
          - type: dot_f1_threshold
            value: 16.905807495117188
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.8255042324171805
            name: Dot Precision
          - type: dot_recall
            value: 0.9495432143286453
            name: Dot Recall
          - type: dot_ap
            value: 0.9192801272426158
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.8484629374000306
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 56.168235778808594
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.9006901291486498
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 57.448089599609375
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.8601706503309084
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9452157711263373
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9331690796886208
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.8485944039089375
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 3.5569825172424316
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.9009756516265629
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 3.694398880004883
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.8597717468465025
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9463276836158192
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9332275611001725
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.8531738206358597
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 56.168235778808594
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.9032999224561303
            name: Max F1
          - type: max_f1_threshold
            value: 57.448089599609375
            name: Max F1 Threshold
          - type: max_precision
            value: 0.8649689236015621
            name: Max Precision
          - type: max_recall
            value: 0.9495432143286453
            name: Max Recall
          - type: max_ap
            value: 0.9354580013152192
            name: Max Ap

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("DashReza7/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2_FINETUNED_on_torob_data_v5")
# Run inference
sentences = [
    'هایومکس',
    'ژل هایومکس ولومایزر 2 سی سی',
    'دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل P-CA501-2',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.8532
cosine_accuracy_threshold 0.7639
cosine_f1 0.9033
cosine_f1_threshold 0.7447
cosine_precision 0.865
cosine_recall 0.9452
cosine_ap 0.9355
dot_accuracy 0.818
dot_accuracy_threshold 17.2437
dot_f1 0.8832
dot_f1_threshold 16.9058
dot_precision 0.8255
dot_recall 0.9495
dot_ap 0.9193
manhattan_accuracy 0.8485
manhattan_accuracy_threshold 56.1682
manhattan_f1 0.9007
manhattan_f1_threshold 57.4481
manhattan_precision 0.8602
manhattan_recall 0.9452
manhattan_ap 0.9332
euclidean_accuracy 0.8486
euclidean_accuracy_threshold 3.557
euclidean_f1 0.901
euclidean_f1_threshold 3.6944
euclidean_precision 0.8598
euclidean_recall 0.9463
euclidean_ap 0.9332
max_accuracy 0.8532
max_accuracy_threshold 56.1682
max_f1 0.9033
max_f1_threshold 57.4481
max_precision 0.865
max_recall 0.9495
max_ap 0.9355

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss max_ap
None 0 - 0.8131
0.3115 500 0.0256 -
0.6231 1000 0.0179 -
0.9346 1500 0.0165 -
1.2461 2000 0.0152 -
1.5576 2500 0.0148 -
1.8692 3000 0.0144 -
2.0 3210 - 0.9355

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, 
    title={Dimensionality Reduction by Learning an Invariant Mapping}, 
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}