metadata
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:410745
- loss:ContrastiveLoss
widget:
- source_sentence: وینچ
sentences:
- >-
ترقه شکلاتی ( هفت ترقه ) ناریه پارس درجه 1 بسته 15 عددی ترقه شکلاتی (
هفت ترقه ) ناریه پارس درجه 1 بسته 15 عددی 10عدد ناریه ترقه شکلاتی هفت
ترقه بار تازه بدون رطوبت وخرابی مارک معتبر نورافشانی
- پارچه میکرو کجراه
- >-
Car winch-1500LBS-KARA وینچ خودرو آفرود ۶۸۰ کیلوگرم کارا ۱۵۰۰lbs وینچ
خودرویی (جلو ماشینی) 1500LBS کارا (KARA)
- source_sentence: ' وسپا '
sentences:
- پولوشرت زرد وسپا
- دوچرخه بند سقفی لیفان X70 ایکس 70 آلومینیومی طرح منابو
- >-
دوچرخه ویوا Oxygen سایز 26 دوچرخه 26 ويوا OXYGEN دوچرخه کوهستان ویوا مدل
OXYGEN سایز 26
- source_sentence: دوچرخه المپیا سایز 27 5
sentences:
- "دوچرخه شهری المپیا کد 16220 سایز 16 دوچرخه شهری المپیا\_کد 16220 سایز 16 دوچرخه المپیا کد 16220 سایز 16 - OLYMPIA"
- لامپ اس ام دی خودرو مدل 8B بسته 2 عددی
- قیمت کمپرس سنج موتور
- source_sentence: دچرخه ی
sentences:
- هیدروفیشیال ۷ کاره نیوفیس پلاس متور سنگین ۲۰۲۲
- جامدادی کیوت
- جعبه ی کادو ی رنگی
- source_sentence: هایومکس
sentences:
- انگشتر حدید صینی کد2439
- ژل هایومکس ولومایزر 2 سی سی
- >-
دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل
P-CA501-2
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.8531738206358597
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.763870358467102
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9032999224561303
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7447167634963989
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8649689236015621
name: Cosine Precision
- type: cosine_recall
value: 0.9451857194374323
name: Cosine Recall
- type: cosine_ap
value: 0.9354580013152192
name: Cosine Ap
- type: dot_accuracy
value: 0.8179627073336401
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 17.24372100830078
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8831898479427548
name: Dot F1
- type: dot_f1_threshold
value: 16.905807495117188
name: Dot F1 Threshold
- type: dot_precision
value: 0.8255042324171805
name: Dot Precision
- type: dot_recall
value: 0.9495432143286453
name: Dot Recall
- type: dot_ap
value: 0.9192801272426158
name: Dot Ap
- type: manhattan_accuracy
value: 0.8484629374000306
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 56.168235778808594
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9006901291486498
name: Manhattan F1
- type: manhattan_f1_threshold
value: 57.448089599609375
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8601706503309084
name: Manhattan Precision
- type: manhattan_recall
value: 0.9452157711263373
name: Manhattan Recall
- type: manhattan_ap
value: 0.9331690796886208
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8485944039089375
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 3.5569825172424316
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9009756516265629
name: Euclidean F1
- type: euclidean_f1_threshold
value: 3.694398880004883
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8597717468465025
name: Euclidean Precision
- type: euclidean_recall
value: 0.9463276836158192
name: Euclidean Recall
- type: euclidean_ap
value: 0.9332275611001725
name: Euclidean Ap
- type: max_accuracy
value: 0.8531738206358597
name: Max Accuracy
- type: max_accuracy_threshold
value: 56.168235778808594
name: Max Accuracy Threshold
- type: max_f1
value: 0.9032999224561303
name: Max F1
- type: max_f1_threshold
value: 57.448089599609375
name: Max F1 Threshold
- type: max_precision
value: 0.8649689236015621
name: Max Precision
- type: max_recall
value: 0.9495432143286453
name: Max Recall
- type: max_ap
value: 0.9354580013152192
name: Max Ap
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("DashReza7/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2_FINETUNED_on_torob_data_v5")
# Run inference
sentences = [
'هایومکس',
'ژل هایومکس ولومایزر 2 سی سی',
'دزدگیر پاناتک مدل P-CA501 دزدگیر پاناتک P-CA501-2 دزدگیر پاناتک مدل P-CA501-2',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8532 |
cosine_accuracy_threshold | 0.7639 |
cosine_f1 | 0.9033 |
cosine_f1_threshold | 0.7447 |
cosine_precision | 0.865 |
cosine_recall | 0.9452 |
cosine_ap | 0.9355 |
dot_accuracy | 0.818 |
dot_accuracy_threshold | 17.2437 |
dot_f1 | 0.8832 |
dot_f1_threshold | 16.9058 |
dot_precision | 0.8255 |
dot_recall | 0.9495 |
dot_ap | 0.9193 |
manhattan_accuracy | 0.8485 |
manhattan_accuracy_threshold | 56.1682 |
manhattan_f1 | 0.9007 |
manhattan_f1_threshold | 57.4481 |
manhattan_precision | 0.8602 |
manhattan_recall | 0.9452 |
manhattan_ap | 0.9332 |
euclidean_accuracy | 0.8486 |
euclidean_accuracy_threshold | 3.557 |
euclidean_f1 | 0.901 |
euclidean_f1_threshold | 3.6944 |
euclidean_precision | 0.8598 |
euclidean_recall | 0.9463 |
euclidean_ap | 0.9332 |
max_accuracy | 0.8532 |
max_accuracy_threshold | 56.1682 |
max_f1 | 0.9033 |
max_f1_threshold | 57.4481 |
max_precision | 0.865 |
max_recall | 0.9495 |
max_ap | 0.9355 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | max_ap |
---|---|---|---|
None | 0 | - | 0.8131 |
0.3115 | 500 | 0.0256 | - |
0.6231 | 1000 | 0.0179 | - |
0.9346 | 1500 | 0.0165 | - |
1.2461 | 2000 | 0.0152 | - |
1.5576 | 2500 | 0.0148 | - |
1.8692 | 3000 | 0.0144 | - |
2.0 | 3210 | - | 0.9355 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}