DavidPL1's picture
Upload folder using huggingface_hub
35cb56f verified
raw
history blame
61.4 kB
[2024-05-27 23:16:03,598][1934158] Saving configuration to /media/fast/code/learning/train_dir/default_experiment/config.json...
[2024-05-27 23:16:03,599][1934158] Rollout worker 0 uses device cpu
[2024-05-27 23:16:03,599][1934158] Rollout worker 1 uses device cpu
[2024-05-27 23:16:03,599][1934158] Rollout worker 2 uses device cpu
[2024-05-27 23:16:03,599][1934158] Rollout worker 3 uses device cpu
[2024-05-27 23:16:03,599][1934158] Rollout worker 4 uses device cpu
[2024-05-27 23:16:03,599][1934158] Rollout worker 5 uses device cpu
[2024-05-27 23:16:03,599][1934158] Rollout worker 6 uses device cpu
[2024-05-27 23:16:03,599][1934158] Rollout worker 7 uses device cpu
[2024-05-27 23:16:03,623][1934158] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-05-27 23:16:03,623][1934158] InferenceWorker_p0-w0: min num requests: 2
[2024-05-27 23:16:03,635][1934158] Starting all processes...
[2024-05-27 23:16:03,635][1934158] Starting process learner_proc0
[2024-05-27 23:16:05,222][1934158] Starting all processes...
[2024-05-27 23:16:05,225][1934158] Starting process inference_proc0-0
[2024-05-27 23:16:05,225][1934158] Starting process rollout_proc0
[2024-05-27 23:16:05,225][1934158] Starting process rollout_proc1
[2024-05-27 23:16:05,225][1934270] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-05-27 23:16:05,225][1934270] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2024-05-27 23:16:05,225][1934158] Starting process rollout_proc2
[2024-05-27 23:16:05,225][1934158] Starting process rollout_proc3
[2024-05-27 23:16:05,227][1934158] Starting process rollout_proc4
[2024-05-27 23:16:05,228][1934158] Starting process rollout_proc5
[2024-05-27 23:16:05,235][1934270] Num visible devices: 1
[2024-05-27 23:16:05,228][1934158] Starting process rollout_proc6
[2024-05-27 23:16:05,231][1934158] Starting process rollout_proc7
[2024-05-27 23:16:05,252][1934270] Starting seed is not provided
[2024-05-27 23:16:05,252][1934270] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-05-27 23:16:05,252][1934270] Initializing actor-critic model on device cuda:0
[2024-05-27 23:16:05,252][1934270] RunningMeanStd input shape: (3, 72, 128)
[2024-05-27 23:16:05,253][1934270] RunningMeanStd input shape: (1,)
[2024-05-27 23:16:05,265][1934270] ConvEncoder: input_channels=3
[2024-05-27 23:16:05,383][1934270] Conv encoder output size: 512
[2024-05-27 23:16:05,383][1934270] Policy head output size: 512
[2024-05-27 23:16:05,396][1934270] Created Actor Critic model with architecture:
[2024-05-27 23:16:05,396][1934270] ActorCriticSharedWeights(
(obs_normalizer): ObservationNormalizer(
(running_mean_std): RunningMeanStdDictInPlace(
(running_mean_std): ModuleDict(
(obs): RunningMeanStdInPlace()
)
)
)
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
(encoder): VizdoomEncoder(
(basic_encoder): ConvEncoder(
(enc): RecursiveScriptModule(
original_name=ConvEncoderImpl
(conv_head): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=ELU)
(2): RecursiveScriptModule(original_name=Conv2d)
(3): RecursiveScriptModule(original_name=ELU)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ELU)
)
(mlp_layers): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Linear)
(1): RecursiveScriptModule(original_name=ELU)
)
)
)
)
(core): ModelCoreRNN(
(core): GRU(512, 512)
)
(decoder): MlpDecoder(
(mlp): Identity()
)
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
(action_parameterization): ActionParameterizationDefault(
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
)
)
[2024-05-27 23:16:05,572][1934270] Using optimizer <class 'torch.optim.adam.Adam'>
[2024-05-27 23:16:06,494][1934270] No checkpoints found
[2024-05-27 23:16:06,494][1934270] Did not load from checkpoint, starting from scratch!
[2024-05-27 23:16:06,497][1934270] Initialized policy 0 weights for model version 0
[2024-05-27 23:16:06,525][1934270] LearnerWorker_p0 finished initialization!
[2024-05-27 23:16:06,525][1934270] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-05-27 23:16:09,677][1934319] Worker 3 uses CPU cores [6, 7]
[2024-05-27 23:16:09,679][1934318] Worker 2 uses CPU cores [4, 5]
[2024-05-27 23:16:09,679][1934337] Worker 6 uses CPU cores [12, 13]
[2024-05-27 23:16:09,691][1934315] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-05-27 23:16:09,691][1934315] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2024-05-27 23:16:09,696][1934316] Worker 0 uses CPU cores [0, 1]
[2024-05-27 23:16:09,715][1934315] Num visible devices: 1
[2024-05-27 23:16:09,755][1934320] Worker 4 uses CPU cores [8, 9]
[2024-05-27 23:16:09,759][1934317] Worker 1 uses CPU cores [2, 3]
[2024-05-27 23:16:09,760][1934336] Worker 5 uses CPU cores [10, 11]
[2024-05-27 23:16:09,766][1934158] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2024-05-27 23:16:09,769][1934342] Worker 7 uses CPU cores [14, 15]
[2024-05-27 23:16:09,810][1934315] RunningMeanStd input shape: (3, 72, 128)
[2024-05-27 23:16:09,811][1934315] RunningMeanStd input shape: (1,)
[2024-05-27 23:16:09,820][1934315] ConvEncoder: input_channels=3
[2024-05-27 23:16:09,897][1934315] Conv encoder output size: 512
[2024-05-27 23:16:09,898][1934315] Policy head output size: 512
[2024-05-27 23:16:09,948][1934158] Inference worker 0-0 is ready!
[2024-05-27 23:16:09,948][1934158] All inference workers are ready! Signal rollout workers to start!
[2024-05-27 23:16:09,966][1934316] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-05-27 23:16:09,966][1934319] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-05-27 23:16:09,966][1934320] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-05-27 23:16:09,966][1934318] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-05-27 23:16:09,966][1934342] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-05-27 23:16:09,966][1934336] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-05-27 23:16:09,966][1934337] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-05-27 23:16:09,966][1934317] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-05-27 23:16:10,026][1934319] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
[2024-05-27 23:16:10,027][1934319] EvtLoop [rollout_proc3_evt_loop, process=rollout_proc3] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
Traceback (most recent call last):
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
self.game.init()
vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
slot_callable(*args)
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
env_runner.init(self.timing)
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
self._reset()
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/gymnasium/core.py", line 414, in reset
return self.env.reset(seed=seed, options=options)
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
obs, info = self.env.reset(**kwargs)
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
obs, info = self.env.reset(**kwargs)
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
return self.env.reset(**kwargs)
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/gymnasium/core.py", line 462, in reset
obs, info = self.env.reset(seed=seed, options=options)
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 82, in reset
obs, info = self.env.reset(**kwargs)
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/gymnasium/core.py", line 414, in reset
return self.env.reset(seed=seed, options=options)
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
return self.env.reset(**kwargs)
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
self._ensure_initialized()
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
self.initialize()
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
self._game_init()
File "/media/fast/code/learning/venv_learning/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
raise EnvCriticalError()
sample_factory.envs.env_utils.EnvCriticalError
[2024-05-27 23:16:10,029][1934319] Unhandled exception in evt loop rollout_proc3_evt_loop
[2024-05-27 23:16:10,583][1934337] Decorrelating experience for 0 frames...
[2024-05-27 23:16:10,583][1934342] Decorrelating experience for 0 frames...
[2024-05-27 23:16:10,657][1934318] Decorrelating experience for 0 frames...
[2024-05-27 23:16:10,916][1934342] Decorrelating experience for 32 frames...
[2024-05-27 23:16:11,000][1934316] Decorrelating experience for 0 frames...
[2024-05-27 23:16:11,225][1934158] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2024-05-27 23:16:11,427][1934337] Decorrelating experience for 32 frames...
[2024-05-27 23:16:11,428][1934316] Decorrelating experience for 32 frames...
[2024-05-27 23:16:11,606][1934320] Decorrelating experience for 0 frames...
[2024-05-27 23:16:11,882][1934316] Decorrelating experience for 64 frames...
[2024-05-27 23:16:12,052][1934342] Decorrelating experience for 64 frames...
[2024-05-27 23:16:12,155][1934320] Decorrelating experience for 32 frames...
[2024-05-27 23:16:12,672][1934316] Decorrelating experience for 96 frames...
[2024-05-27 23:16:12,755][1934337] Decorrelating experience for 64 frames...
[2024-05-27 23:16:12,756][1934318] Decorrelating experience for 32 frames...
[2024-05-27 23:16:12,831][1934317] Decorrelating experience for 0 frames...
[2024-05-27 23:16:13,085][1934342] Decorrelating experience for 96 frames...
[2024-05-27 23:16:13,412][1934320] Decorrelating experience for 64 frames...
[2024-05-27 23:16:13,493][1934337] Decorrelating experience for 96 frames...
[2024-05-27 23:16:13,592][1934318] Decorrelating experience for 64 frames...
[2024-05-27 23:16:13,763][1934336] Decorrelating experience for 0 frames...
[2024-05-27 23:16:14,101][1934317] Decorrelating experience for 32 frames...
[2024-05-27 23:16:14,182][1934318] Decorrelating experience for 96 frames...
[2024-05-27 23:16:14,425][1934320] Decorrelating experience for 96 frames...
[2024-05-27 23:16:14,429][1934336] Decorrelating experience for 32 frames...
[2024-05-27 23:16:14,657][1934317] Decorrelating experience for 64 frames...
[2024-05-27 23:16:14,666][1934270] Signal inference workers to stop experience collection...
[2024-05-27 23:16:14,670][1934315] InferenceWorker_p0-w0: stopping experience collection
[2024-05-27 23:16:14,811][1934336] Decorrelating experience for 64 frames...
[2024-05-27 23:16:14,967][1934317] Decorrelating experience for 96 frames...
[2024-05-27 23:16:15,277][1934336] Decorrelating experience for 96 frames...
[2024-05-27 23:16:15,790][1934270] Signal inference workers to resume experience collection...
[2024-05-27 23:16:15,790][1934315] InferenceWorker_p0-w0: resuming experience collection
[2024-05-27 23:16:16,225][1934158] Fps is (10 sec: 1902.6, 60 sec: 1902.6, 300 sec: 1902.6). Total num frames: 12288. Throughput: 0: 379.3. Samples: 2450. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
[2024-05-27 23:16:16,225][1934158] Avg episode reward: [(0, '3.187')]
[2024-05-27 23:16:17,981][1934315] Updated weights for policy 0, policy_version 10 (0.0101)
[2024-05-27 23:16:19,839][1934315] Updated weights for policy 0, policy_version 20 (0.0007)
[2024-05-27 23:16:21,225][1934158] Fps is (10 sec: 11059.1, 60 sec: 9651.5, 300 sec: 9651.5). Total num frames: 110592. Throughput: 0: 1415.4. Samples: 16218. Policy #0 lag: (min: 0.0, avg: 0.5, max: 3.0)
[2024-05-27 23:16:21,225][1934158] Avg episode reward: [(0, '4.379')]
[2024-05-27 23:16:21,228][1934270] Saving new best policy, reward=4.379!
[2024-05-27 23:16:21,659][1934315] Updated weights for policy 0, policy_version 30 (0.0007)
[2024-05-27 23:16:23,614][1934315] Updated weights for policy 0, policy_version 40 (0.0008)
[2024-05-27 23:16:23,619][1934158] Heartbeat connected on Batcher_0
[2024-05-27 23:16:23,621][1934158] Heartbeat connected on LearnerWorker_p0
[2024-05-27 23:16:23,625][1934158] Heartbeat connected on RolloutWorker_w0
[2024-05-27 23:16:23,626][1934158] Heartbeat connected on InferenceWorker_p0-w0
[2024-05-27 23:16:23,627][1934158] Heartbeat connected on RolloutWorker_w1
[2024-05-27 23:16:23,632][1934158] Heartbeat connected on RolloutWorker_w4
[2024-05-27 23:16:23,632][1934158] Heartbeat connected on RolloutWorker_w5
[2024-05-27 23:16:23,634][1934158] Heartbeat connected on RolloutWorker_w6
[2024-05-27 23:16:23,635][1934158] Heartbeat connected on RolloutWorker_w2
[2024-05-27 23:16:23,636][1934158] Heartbeat connected on RolloutWorker_w7
[2024-05-27 23:16:25,556][1934315] Updated weights for policy 0, policy_version 50 (0.0012)
[2024-05-27 23:16:26,225][1934158] Fps is (10 sec: 20480.0, 60 sec: 13190.0, 300 sec: 13190.0). Total num frames: 217088. Throughput: 0: 2945.8. Samples: 48484. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-05-27 23:16:26,225][1934158] Avg episode reward: [(0, '4.620')]
[2024-05-27 23:16:26,225][1934270] Saving new best policy, reward=4.620!
[2024-05-27 23:16:27,524][1934315] Updated weights for policy 0, policy_version 60 (0.0011)
[2024-05-27 23:16:29,497][1934315] Updated weights for policy 0, policy_version 70 (0.0007)
[2024-05-27 23:16:31,225][1934158] Fps is (10 sec: 20889.7, 60 sec: 14888.7, 300 sec: 14888.7). Total num frames: 319488. Throughput: 0: 3703.7. Samples: 79476. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-05-27 23:16:31,225][1934158] Avg episode reward: [(0, '4.594')]
[2024-05-27 23:16:31,523][1934315] Updated weights for policy 0, policy_version 80 (0.0007)
[2024-05-27 23:16:33,629][1934315] Updated weights for policy 0, policy_version 90 (0.0007)
[2024-05-27 23:16:35,621][1934315] Updated weights for policy 0, policy_version 100 (0.0007)
[2024-05-27 23:16:36,225][1934158] Fps is (10 sec: 20480.0, 60 sec: 15945.3, 300 sec: 15945.3). Total num frames: 421888. Throughput: 0: 3572.4. Samples: 94520. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-05-27 23:16:36,225][1934158] Avg episode reward: [(0, '4.672')]
[2024-05-27 23:16:36,225][1934270] Saving new best policy, reward=4.672!
[2024-05-27 23:16:37,650][1934315] Updated weights for policy 0, policy_version 110 (0.0007)
[2024-05-27 23:16:39,626][1934315] Updated weights for policy 0, policy_version 120 (0.0008)
[2024-05-27 23:16:41,225][1934158] Fps is (10 sec: 20070.3, 60 sec: 16535.8, 300 sec: 16535.8). Total num frames: 520192. Throughput: 0: 3978.1. Samples: 125144. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-05-27 23:16:41,225][1934158] Avg episode reward: [(0, '4.368')]
[2024-05-27 23:16:41,688][1934315] Updated weights for policy 0, policy_version 130 (0.0007)
[2024-05-27 23:16:43,620][1934315] Updated weights for policy 0, policy_version 140 (0.0007)
[2024-05-27 23:16:45,415][1934315] Updated weights for policy 0, policy_version 150 (0.0007)
[2024-05-27 23:16:46,225][1934158] Fps is (10 sec: 20889.6, 60 sec: 17301.4, 300 sec: 17301.4). Total num frames: 630784. Throughput: 0: 4313.8. Samples: 157276. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-05-27 23:16:46,225][1934158] Avg episode reward: [(0, '4.638')]
[2024-05-27 23:16:47,205][1934315] Updated weights for policy 0, policy_version 160 (0.0007)
[2024-05-27 23:16:48,998][1934315] Updated weights for policy 0, policy_version 170 (0.0010)
[2024-05-27 23:16:50,924][1934315] Updated weights for policy 0, policy_version 180 (0.0007)
[2024-05-27 23:16:51,225][1934158] Fps is (10 sec: 22118.5, 60 sec: 17882.4, 300 sec: 17882.4). Total num frames: 741376. Throughput: 0: 4207.1. Samples: 174418. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-05-27 23:16:51,225][1934158] Avg episode reward: [(0, '4.486')]
[2024-05-27 23:16:52,935][1934315] Updated weights for policy 0, policy_version 190 (0.0007)
[2024-05-27 23:16:54,845][1934315] Updated weights for policy 0, policy_version 200 (0.0008)
[2024-05-27 23:16:56,225][1934158] Fps is (10 sec: 21708.7, 60 sec: 18250.1, 300 sec: 18250.1). Total num frames: 847872. Throughput: 0: 4577.8. Samples: 206002. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-05-27 23:16:56,225][1934158] Avg episode reward: [(0, '4.466')]
[2024-05-27 23:16:56,781][1934315] Updated weights for policy 0, policy_version 210 (0.0007)
[2024-05-27 23:16:58,717][1934315] Updated weights for policy 0, policy_version 220 (0.0008)
[2024-05-27 23:17:00,636][1934315] Updated weights for policy 0, policy_version 230 (0.0007)
[2024-05-27 23:17:01,225][1934158] Fps is (10 sec: 20889.6, 60 sec: 18466.8, 300 sec: 18466.8). Total num frames: 950272. Throughput: 0: 5229.4. Samples: 237774. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-05-27 23:17:01,225][1934158] Avg episode reward: [(0, '4.450')]
[2024-05-27 23:17:02,613][1934315] Updated weights for policy 0, policy_version 240 (0.0008)
[2024-05-27 23:17:04,662][1934315] Updated weights for policy 0, policy_version 250 (0.0007)
[2024-05-27 23:17:06,225][1934158] Fps is (10 sec: 20480.0, 60 sec: 18645.1, 300 sec: 18645.1). Total num frames: 1052672. Throughput: 0: 5261.9. Samples: 253004. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-05-27 23:17:06,225][1934158] Avg episode reward: [(0, '4.710')]
[2024-05-27 23:17:06,225][1934270] Saving new best policy, reward=4.710!
[2024-05-27 23:17:06,803][1934315] Updated weights for policy 0, policy_version 260 (0.0011)
[2024-05-27 23:17:08,893][1934315] Updated weights for policy 0, policy_version 270 (0.0007)
[2024-05-27 23:17:10,844][1934315] Updated weights for policy 0, policy_version 280 (0.0012)
[2024-05-27 23:17:11,225][1934158] Fps is (10 sec: 20070.2, 60 sec: 19182.9, 300 sec: 18727.7). Total num frames: 1150976. Throughput: 0: 5203.4. Samples: 282636. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-05-27 23:17:11,225][1934158] Avg episode reward: [(0, '4.512')]
[2024-05-27 23:17:12,691][1934315] Updated weights for policy 0, policy_version 290 (0.0007)
[2024-05-27 23:17:14,604][1934315] Updated weights for policy 0, policy_version 300 (0.0007)
[2024-05-27 23:17:16,225][1934158] Fps is (10 sec: 21299.1, 60 sec: 20889.6, 300 sec: 19044.4). Total num frames: 1265664. Throughput: 0: 5248.3. Samples: 315650. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-05-27 23:17:16,225][1934158] Avg episode reward: [(0, '4.587')]
[2024-05-27 23:17:16,410][1934315] Updated weights for policy 0, policy_version 310 (0.0007)
[2024-05-27 23:17:18,299][1934315] Updated weights for policy 0, policy_version 320 (0.0008)
[2024-05-27 23:17:20,246][1934315] Updated weights for policy 0, policy_version 330 (0.0007)
[2024-05-27 23:17:21,225][1934158] Fps is (10 sec: 22118.6, 60 sec: 21026.2, 300 sec: 19202.2). Total num frames: 1372160. Throughput: 0: 5274.4. Samples: 331866. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-05-27 23:17:21,225][1934158] Avg episode reward: [(0, '4.428')]
[2024-05-27 23:17:22,228][1934315] Updated weights for policy 0, policy_version 340 (0.0007)
[2024-05-27 23:17:24,250][1934315] Updated weights for policy 0, policy_version 350 (0.0007)
[2024-05-27 23:17:26,216][1934315] Updated weights for policy 0, policy_version 360 (0.0008)
[2024-05-27 23:17:26,225][1934158] Fps is (10 sec: 20889.8, 60 sec: 20957.9, 300 sec: 19285.8). Total num frames: 1474560. Throughput: 0: 5278.6. Samples: 362680. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-05-27 23:17:26,225][1934158] Avg episode reward: [(0, '4.760')]
[2024-05-27 23:17:26,225][1934270] Saving new best policy, reward=4.760!
[2024-05-27 23:17:28,176][1934315] Updated weights for policy 0, policy_version 370 (0.0007)
[2024-05-27 23:17:30,122][1934315] Updated weights for policy 0, policy_version 380 (0.0007)
[2024-05-27 23:17:31,225][1934158] Fps is (10 sec: 20480.0, 60 sec: 20957.9, 300 sec: 19359.1). Total num frames: 1576960. Throughput: 0: 5261.3. Samples: 394036. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-05-27 23:17:31,225][1934158] Avg episode reward: [(0, '5.042')]
[2024-05-27 23:17:31,227][1934270] Saving new best policy, reward=5.042!
[2024-05-27 23:17:32,083][1934315] Updated weights for policy 0, policy_version 390 (0.0007)
[2024-05-27 23:17:33,997][1934315] Updated weights for policy 0, policy_version 400 (0.0008)
[2024-05-27 23:17:35,937][1934315] Updated weights for policy 0, policy_version 410 (0.0008)
[2024-05-27 23:17:36,225][1934158] Fps is (10 sec: 20889.5, 60 sec: 21026.1, 300 sec: 19471.3). Total num frames: 1683456. Throughput: 0: 5235.8. Samples: 410028. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-05-27 23:17:36,225][1934158] Avg episode reward: [(0, '4.829')]
[2024-05-27 23:17:37,913][1934315] Updated weights for policy 0, policy_version 420 (0.0007)
[2024-05-27 23:17:39,821][1934315] Updated weights for policy 0, policy_version 430 (0.0007)
[2024-05-27 23:17:41,225][1934158] Fps is (10 sec: 21299.2, 60 sec: 21162.7, 300 sec: 19571.2). Total num frames: 1789952. Throughput: 0: 5239.0. Samples: 441758. Policy #0 lag: (min: 0.0, avg: 0.6, max: 3.0)
[2024-05-27 23:17:41,225][1934158] Avg episode reward: [(0, '5.811')]
[2024-05-27 23:17:41,227][1934270] Saving new best policy, reward=5.811!
[2024-05-27 23:17:41,621][1934315] Updated weights for policy 0, policy_version 440 (0.0007)
[2024-05-27 23:17:43,431][1934315] Updated weights for policy 0, policy_version 450 (0.0008)
[2024-05-27 23:17:45,265][1934315] Updated weights for policy 0, policy_version 460 (0.0007)
[2024-05-27 23:17:46,225][1934158] Fps is (10 sec: 22118.4, 60 sec: 21230.9, 300 sec: 19745.7). Total num frames: 1904640. Throughput: 0: 5286.2. Samples: 475652. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-05-27 23:17:46,225][1934158] Avg episode reward: [(0, '6.064')]
[2024-05-27 23:17:46,225][1934270] Saving new best policy, reward=6.064!
[2024-05-27 23:17:47,258][1934315] Updated weights for policy 0, policy_version 470 (0.0007)
[2024-05-27 23:17:49,311][1934315] Updated weights for policy 0, policy_version 480 (0.0007)
[2024-05-27 23:17:51,225][1934158] Fps is (10 sec: 21299.0, 60 sec: 21026.1, 300 sec: 19741.5). Total num frames: 2002944. Throughput: 0: 5272.8. Samples: 490282. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-05-27 23:17:51,225][1934158] Avg episode reward: [(0, '8.117')]
[2024-05-27 23:17:51,228][1934270] Saving new best policy, reward=8.117!
[2024-05-27 23:17:51,309][1934315] Updated weights for policy 0, policy_version 490 (0.0007)
[2024-05-27 23:17:53,208][1934315] Updated weights for policy 0, policy_version 500 (0.0007)
[2024-05-27 23:17:55,270][1934315] Updated weights for policy 0, policy_version 510 (0.0007)
[2024-05-27 23:17:56,225][1934158] Fps is (10 sec: 20070.4, 60 sec: 20957.9, 300 sec: 19776.2). Total num frames: 2105344. Throughput: 0: 5304.0. Samples: 521316. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-05-27 23:17:56,225][1934158] Avg episode reward: [(0, '9.056')]
[2024-05-27 23:17:56,225][1934270] Saving new best policy, reward=9.056!
[2024-05-27 23:17:57,265][1934315] Updated weights for policy 0, policy_version 520 (0.0007)
[2024-05-27 23:17:59,319][1934315] Updated weights for policy 0, policy_version 530 (0.0011)
[2024-05-27 23:18:01,225][1934158] Fps is (10 sec: 20479.9, 60 sec: 20957.8, 300 sec: 19807.7). Total num frames: 2207744. Throughput: 0: 5240.7. Samples: 551482. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-05-27 23:18:01,225][1934158] Avg episode reward: [(0, '11.238')]
[2024-05-27 23:18:01,228][1934270] Saving /media/fast/code/learning/train_dir/default_experiment/checkpoint_p0/checkpoint_000000539_2207744.pth...
[2024-05-27 23:18:01,267][1934270] Saving new best policy, reward=11.238!
[2024-05-27 23:18:01,335][1934315] Updated weights for policy 0, policy_version 540 (0.0007)
[2024-05-27 23:18:03,448][1934315] Updated weights for policy 0, policy_version 550 (0.0012)
[2024-05-27 23:18:05,446][1934315] Updated weights for policy 0, policy_version 560 (0.0007)
[2024-05-27 23:18:06,225][1934158] Fps is (10 sec: 20070.5, 60 sec: 20889.6, 300 sec: 19801.5). Total num frames: 2306048. Throughput: 0: 5211.2. Samples: 566368. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-05-27 23:18:06,225][1934158] Avg episode reward: [(0, '11.336')]
[2024-05-27 23:18:06,225][1934270] Saving new best policy, reward=11.336!
[2024-05-27 23:18:07,421][1934315] Updated weights for policy 0, policy_version 570 (0.0007)
[2024-05-27 23:18:09,239][1934315] Updated weights for policy 0, policy_version 580 (0.0009)
[2024-05-27 23:18:11,047][1934315] Updated weights for policy 0, policy_version 590 (0.0007)
[2024-05-27 23:18:11,224][1934158] Fps is (10 sec: 21299.6, 60 sec: 21162.7, 300 sec: 19930.6). Total num frames: 2420736. Throughput: 0: 5245.1. Samples: 598710. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-05-27 23:18:11,225][1934158] Avg episode reward: [(0, '14.662')]
[2024-05-27 23:18:11,227][1934270] Saving new best policy, reward=14.662!
[2024-05-27 23:18:12,854][1934315] Updated weights for policy 0, policy_version 600 (0.0009)
[2024-05-27 23:18:14,740][1934315] Updated weights for policy 0, policy_version 610 (0.0007)
[2024-05-27 23:18:16,225][1934158] Fps is (10 sec: 22118.2, 60 sec: 21026.1, 300 sec: 19984.7). Total num frames: 2527232. Throughput: 0: 5272.6. Samples: 631302. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-05-27 23:18:16,225][1934158] Avg episode reward: [(0, '15.552')]
[2024-05-27 23:18:16,225][1934270] Saving new best policy, reward=15.552!
[2024-05-27 23:18:16,763][1934315] Updated weights for policy 0, policy_version 620 (0.0011)
[2024-05-27 23:18:18,712][1934315] Updated weights for policy 0, policy_version 630 (0.0012)
[2024-05-27 23:18:20,722][1934315] Updated weights for policy 0, policy_version 640 (0.0012)
[2024-05-27 23:18:21,225][1934158] Fps is (10 sec: 20889.2, 60 sec: 20957.8, 300 sec: 20003.5). Total num frames: 2629632. Throughput: 0: 5265.6. Samples: 646982. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-05-27 23:18:21,225][1934158] Avg episode reward: [(0, '15.319')]
[2024-05-27 23:18:22,704][1934315] Updated weights for policy 0, policy_version 650 (0.0012)
[2024-05-27 23:18:24,737][1934315] Updated weights for policy 0, policy_version 660 (0.0009)
[2024-05-27 23:18:26,225][1934158] Fps is (10 sec: 20480.1, 60 sec: 20957.9, 300 sec: 20021.0). Total num frames: 2732032. Throughput: 0: 5239.9. Samples: 677552. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-05-27 23:18:26,225][1934158] Avg episode reward: [(0, '18.705')]
[2024-05-27 23:18:26,225][1934270] Saving new best policy, reward=18.705!
[2024-05-27 23:18:26,687][1934315] Updated weights for policy 0, policy_version 670 (0.0007)
[2024-05-27 23:18:28,690][1934315] Updated weights for policy 0, policy_version 680 (0.0007)
[2024-05-27 23:18:30,666][1934315] Updated weights for policy 0, policy_version 690 (0.0007)
[2024-05-27 23:18:31,225][1934158] Fps is (10 sec: 20480.2, 60 sec: 20957.9, 300 sec: 20037.2). Total num frames: 2834432. Throughput: 0: 5177.5. Samples: 708638. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-05-27 23:18:31,225][1934158] Avg episode reward: [(0, '19.747')]
[2024-05-27 23:18:31,228][1934270] Saving new best policy, reward=19.747!
[2024-05-27 23:18:32,744][1934315] Updated weights for policy 0, policy_version 700 (0.0007)
[2024-05-27 23:18:34,708][1934315] Updated weights for policy 0, policy_version 710 (0.0008)
[2024-05-27 23:18:36,225][1934158] Fps is (10 sec: 20479.8, 60 sec: 20889.6, 300 sec: 20052.3). Total num frames: 2936832. Throughput: 0: 5187.1. Samples: 723702. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-05-27 23:18:36,225][1934158] Avg episode reward: [(0, '20.573')]
[2024-05-27 23:18:36,226][1934270] Saving new best policy, reward=20.573!
[2024-05-27 23:18:36,748][1934315] Updated weights for policy 0, policy_version 720 (0.0008)
[2024-05-27 23:18:38,561][1934315] Updated weights for policy 0, policy_version 730 (0.0008)
[2024-05-27 23:18:40,387][1934315] Updated weights for policy 0, policy_version 740 (0.0008)
[2024-05-27 23:18:41,225][1934158] Fps is (10 sec: 21299.2, 60 sec: 20957.9, 300 sec: 20120.5). Total num frames: 3047424. Throughput: 0: 5210.7. Samples: 755796. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-05-27 23:18:41,225][1934158] Avg episode reward: [(0, '21.032')]
[2024-05-27 23:18:41,228][1934270] Saving new best policy, reward=21.032!
[2024-05-27 23:18:42,185][1934315] Updated weights for policy 0, policy_version 750 (0.0007)
[2024-05-27 23:18:44,027][1934315] Updated weights for policy 0, policy_version 760 (0.0007)
[2024-05-27 23:18:45,915][1934315] Updated weights for policy 0, policy_version 770 (0.0007)
[2024-05-27 23:18:46,225][1934158] Fps is (10 sec: 22118.7, 60 sec: 20889.6, 300 sec: 20184.4). Total num frames: 3158016. Throughput: 0: 5280.4. Samples: 789100. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-05-27 23:18:46,225][1934158] Avg episode reward: [(0, '18.887')]
[2024-05-27 23:18:47,935][1934315] Updated weights for policy 0, policy_version 780 (0.0007)
[2024-05-27 23:18:49,831][1934315] Updated weights for policy 0, policy_version 790 (0.0007)
[2024-05-27 23:18:51,225][1934158] Fps is (10 sec: 21708.7, 60 sec: 21026.2, 300 sec: 20218.9). Total num frames: 3264512. Throughput: 0: 5299.6. Samples: 804852. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-05-27 23:18:51,225][1934158] Avg episode reward: [(0, '17.324')]
[2024-05-27 23:18:51,873][1934315] Updated weights for policy 0, policy_version 800 (0.0012)
[2024-05-27 23:18:53,869][1934315] Updated weights for policy 0, policy_version 810 (0.0008)
[2024-05-27 23:18:55,945][1934315] Updated weights for policy 0, policy_version 820 (0.0011)
[2024-05-27 23:18:56,225][1934158] Fps is (10 sec: 20480.0, 60 sec: 20957.9, 300 sec: 20202.1). Total num frames: 3362816. Throughput: 0: 5260.6. Samples: 835438. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-05-27 23:18:56,225][1934158] Avg episode reward: [(0, '17.131')]
[2024-05-27 23:18:57,993][1934315] Updated weights for policy 0, policy_version 830 (0.0016)
[2024-05-27 23:18:59,990][1934315] Updated weights for policy 0, policy_version 840 (0.0007)
[2024-05-27 23:19:01,225][1934158] Fps is (10 sec: 20070.4, 60 sec: 20957.9, 300 sec: 20210.2). Total num frames: 3465216. Throughput: 0: 5207.4. Samples: 865636. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-05-27 23:19:01,225][1934158] Avg episode reward: [(0, '20.196')]
[2024-05-27 23:19:02,004][1934315] Updated weights for policy 0, policy_version 850 (0.0008)
[2024-05-27 23:19:04,080][1934315] Updated weights for policy 0, policy_version 860 (0.0007)
[2024-05-27 23:19:05,800][1934315] Updated weights for policy 0, policy_version 870 (0.0007)
[2024-05-27 23:19:06,225][1934158] Fps is (10 sec: 20889.5, 60 sec: 21094.4, 300 sec: 20241.1). Total num frames: 3571712. Throughput: 0: 5194.5. Samples: 880732. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-05-27 23:19:06,225][1934158] Avg episode reward: [(0, '21.470')]
[2024-05-27 23:19:06,225][1934270] Saving new best policy, reward=21.470!
[2024-05-27 23:19:07,672][1934315] Updated weights for policy 0, policy_version 880 (0.0008)
[2024-05-27 23:19:09,539][1934315] Updated weights for policy 0, policy_version 890 (0.0008)
[2024-05-27 23:19:11,225][1934158] Fps is (10 sec: 21708.9, 60 sec: 21026.1, 300 sec: 20292.8). Total num frames: 3682304. Throughput: 0: 5259.7. Samples: 914240. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-05-27 23:19:11,225][1934158] Avg episode reward: [(0, '21.748')]
[2024-05-27 23:19:11,228][1934270] Saving new best policy, reward=21.748!
[2024-05-27 23:19:11,365][1934315] Updated weights for policy 0, policy_version 900 (0.0007)
[2024-05-27 23:19:13,481][1934315] Updated weights for policy 0, policy_version 910 (0.0009)
[2024-05-27 23:19:15,430][1934315] Updated weights for policy 0, policy_version 920 (0.0008)
[2024-05-27 23:19:16,225][1934158] Fps is (10 sec: 20889.5, 60 sec: 20889.6, 300 sec: 20275.9). Total num frames: 3780608. Throughput: 0: 5263.5. Samples: 945494. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-05-27 23:19:16,225][1934158] Avg episode reward: [(0, '20.029')]
[2024-05-27 23:19:17,514][1934315] Updated weights for policy 0, policy_version 930 (0.0011)
[2024-05-27 23:19:19,529][1934315] Updated weights for policy 0, policy_version 940 (0.0008)
[2024-05-27 23:19:21,225][1934158] Fps is (10 sec: 20070.4, 60 sec: 20889.6, 300 sec: 20281.2). Total num frames: 3883008. Throughput: 0: 5255.3. Samples: 960192. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-05-27 23:19:21,225][1934158] Avg episode reward: [(0, '22.181')]
[2024-05-27 23:19:21,227][1934270] Saving new best policy, reward=22.181!
[2024-05-27 23:19:21,559][1934315] Updated weights for policy 0, policy_version 950 (0.0007)
[2024-05-27 23:19:23,512][1934315] Updated weights for policy 0, policy_version 960 (0.0007)
[2024-05-27 23:19:25,534][1934315] Updated weights for policy 0, policy_version 970 (0.0011)
[2024-05-27 23:19:26,225][1934158] Fps is (10 sec: 20480.2, 60 sec: 20889.6, 300 sec: 20286.3). Total num frames: 3985408. Throughput: 0: 5222.8. Samples: 990822. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-05-27 23:19:26,225][1934158] Avg episode reward: [(0, '19.642')]
[2024-05-27 23:19:27,196][1934158] Component Batcher_0 stopped!
[2024-05-27 23:19:27,196][1934270] Stopping Batcher_0...
[2024-05-27 23:19:27,196][1934158] Component RolloutWorker_w3 process died already! Don't wait for it.
[2024-05-27 23:19:27,196][1934270] Loop batcher_evt_loop terminating...
[2024-05-27 23:19:27,196][1934270] Saving /media/fast/code/learning/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-05-27 23:19:27,202][1934317] Stopping RolloutWorker_w1...
[2024-05-27 23:19:27,202][1934158] Component RolloutWorker_w1 stopped!
[2024-05-27 23:19:27,202][1934317] Loop rollout_proc1_evt_loop terminating...
[2024-05-27 23:19:27,202][1934320] Stopping RolloutWorker_w4...
[2024-05-27 23:19:27,202][1934158] Component RolloutWorker_w4 stopped!
[2024-05-27 23:19:27,202][1934316] Stopping RolloutWorker_w0...
[2024-05-27 23:19:27,202][1934336] Stopping RolloutWorker_w5...
[2024-05-27 23:19:27,203][1934320] Loop rollout_proc4_evt_loop terminating...
[2024-05-27 23:19:27,203][1934158] Component RolloutWorker_w0 stopped!
[2024-05-27 23:19:27,203][1934316] Loop rollout_proc0_evt_loop terminating...
[2024-05-27 23:19:27,203][1934318] Stopping RolloutWorker_w2...
[2024-05-27 23:19:27,203][1934158] Component RolloutWorker_w5 stopped!
[2024-05-27 23:19:27,203][1934336] Loop rollout_proc5_evt_loop terminating...
[2024-05-27 23:19:27,203][1934337] Stopping RolloutWorker_w6...
[2024-05-27 23:19:27,203][1934158] Component RolloutWorker_w2 stopped!
[2024-05-27 23:19:27,203][1934158] Component RolloutWorker_w6 stopped!
[2024-05-27 23:19:27,203][1934318] Loop rollout_proc2_evt_loop terminating...
[2024-05-27 23:19:27,203][1934337] Loop rollout_proc6_evt_loop terminating...
[2024-05-27 23:19:27,208][1934342] Stopping RolloutWorker_w7...
[2024-05-27 23:19:27,208][1934158] Component RolloutWorker_w7 stopped!
[2024-05-27 23:19:27,208][1934342] Loop rollout_proc7_evt_loop terminating...
[2024-05-27 23:19:27,210][1934315] Weights refcount: 2 0
[2024-05-27 23:19:27,250][1934270] Saving /media/fast/code/learning/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-05-27 23:19:27,261][1934315] Stopping InferenceWorker_p0-w0...
[2024-05-27 23:19:27,261][1934315] Loop inference_proc0-0_evt_loop terminating...
[2024-05-27 23:19:27,261][1934158] Component InferenceWorker_p0-w0 stopped!
[2024-05-27 23:19:27,311][1934270] Stopping LearnerWorker_p0...
[2024-05-27 23:19:27,311][1934158] Component LearnerWorker_p0 stopped!
[2024-05-27 23:19:27,311][1934270] Loop learner_proc0_evt_loop terminating...
[2024-05-27 23:19:27,312][1934158] Waiting for process learner_proc0 to stop...
[2024-05-27 23:19:27,998][1934158] Waiting for process inference_proc0-0 to join...
[2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc0 to join...
[2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc1 to join...
[2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc2 to join...
[2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc3 to join...
[2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc4 to join...
[2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc5 to join...
[2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc6 to join...
[2024-05-27 23:19:27,999][1934158] Waiting for process rollout_proc7 to join...
[2024-05-27 23:19:27,999][1934158] Batcher 0 profile tree view:
batching: 17.1563, releasing_batches: 0.0218
[2024-05-27 23:19:27,999][1934158] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0000
wait_policy_total: 4.5927
update_model: 2.6467
weight_update: 0.0007
one_step: 0.0025
handle_policy_step: 180.1540
deserialize: 5.4368, stack: 0.9178, obs_to_device_normalize: 40.7850, forward: 100.2096, send_messages: 7.8527
prepare_outputs: 18.8993
to_cpu: 11.8170
[2024-05-27 23:19:27,999][1934158] Learner 0 profile tree view:
misc: 0.0033, prepare_batch: 6.9298
train: 19.9916
epoch_init: 0.0036, minibatch_init: 0.0045, losses_postprocess: 0.3051, kl_divergence: 0.3106, after_optimizer: 6.7727
calculate_losses: 8.3137
losses_init: 0.0021, forward_head: 0.5755, bptt_initial: 5.5591, tail: 0.4520, advantages_returns: 0.1178, losses: 0.7330
bptt: 0.7343
bptt_forward_core: 0.6989
update: 3.9895
clip: 0.4408
[2024-05-27 23:19:27,999][1934158] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.1094, enqueue_policy_requests: 6.7447, env_step: 74.1145, overhead: 8.3155, complete_rollouts: 0.2030
save_policy_outputs: 6.8527
split_output_tensors: 3.2861
[2024-05-27 23:19:27,999][1934158] RolloutWorker_w7 profile tree view:
wait_for_trajectories: 0.1229, enqueue_policy_requests: 6.7854, env_step: 69.9361, overhead: 8.1086, complete_rollouts: 0.2114
save_policy_outputs: 6.5377
split_output_tensors: 3.1628
[2024-05-27 23:19:28,000][1934158] Loop Runner_EvtLoop terminating...
[2024-05-27 23:19:28,000][1934158] Runner profile tree view:
main_loop: 204.3645
[2024-05-27 23:19:28,000][1934158] Collected {0: 4005888}, FPS: 19601.7
[2024-05-27 23:19:28,286][1934158] Loading existing experiment configuration from /media/fast/code/learning/train_dir/default_experiment/config.json
[2024-05-27 23:19:28,286][1934158] Overriding arg 'num_workers' with value 1 passed from command line
[2024-05-27 23:19:28,286][1934158] Adding new argument 'no_render'=True that is not in the saved config file!
[2024-05-27 23:19:28,286][1934158] Adding new argument 'save_video'=True that is not in the saved config file!
[2024-05-27 23:19:28,286][1934158] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2024-05-27 23:19:28,286][1934158] Adding new argument 'video_name'=None that is not in the saved config file!
[2024-05-27 23:19:28,287][1934158] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2024-05-27 23:19:28,287][1934158] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2024-05-27 23:19:28,287][1934158] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2024-05-27 23:19:28,287][1934158] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2024-05-27 23:19:28,287][1934158] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2024-05-27 23:19:28,287][1934158] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2024-05-27 23:19:28,287][1934158] Adding new argument 'train_script'=None that is not in the saved config file!
[2024-05-27 23:19:28,287][1934158] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2024-05-27 23:19:28,287][1934158] Using frameskip 1 and render_action_repeat=4 for evaluation
[2024-05-27 23:19:28,294][1934158] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-05-27 23:19:28,294][1934158] RunningMeanStd input shape: (3, 72, 128)
[2024-05-27 23:19:28,295][1934158] RunningMeanStd input shape: (1,)
[2024-05-27 23:19:28,301][1934158] ConvEncoder: input_channels=3
[2024-05-27 23:19:28,358][1934158] Conv encoder output size: 512
[2024-05-27 23:19:28,358][1934158] Policy head output size: 512
[2024-05-27 23:19:28,450][1934158] Loading state from checkpoint /media/fast/code/learning/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-05-27 23:19:29,259][1934158] Num frames 100...
[2024-05-27 23:19:29,371][1934158] Num frames 200...
[2024-05-27 23:19:29,454][1934158] Num frames 300...
[2024-05-27 23:19:29,532][1934158] Num frames 400...
[2024-05-27 23:19:29,631][1934158] Num frames 500...
[2024-05-27 23:19:29,698][1934158] Num frames 600...
[2024-05-27 23:19:29,791][1934158] Num frames 700...
[2024-05-27 23:19:29,862][1934158] Num frames 800...
[2024-05-27 23:19:29,927][1934158] Num frames 900...
[2024-05-27 23:19:29,998][1934158] Num frames 1000...
[2024-05-27 23:19:30,066][1934158] Num frames 1100...
[2024-05-27 23:19:30,177][1934158] Num frames 1200...
[2024-05-27 23:19:30,260][1934158] Num frames 1300...
[2024-05-27 23:19:30,323][1934158] Num frames 1400...
[2024-05-27 23:19:30,380][1934158] Avg episode rewards: #0: 36.080, true rewards: #0: 14.080
[2024-05-27 23:19:30,380][1934158] Avg episode reward: 36.080, avg true_objective: 14.080
[2024-05-27 23:19:30,437][1934158] Num frames 1500...
[2024-05-27 23:19:30,499][1934158] Num frames 1600...
[2024-05-27 23:19:30,558][1934158] Num frames 1700...
[2024-05-27 23:19:30,615][1934158] Num frames 1800...
[2024-05-27 23:19:30,674][1934158] Num frames 1900...
[2024-05-27 23:19:30,737][1934158] Num frames 2000...
[2024-05-27 23:19:30,840][1934158] Avg episode rewards: #0: 24.400, true rewards: #0: 10.400
[2024-05-27 23:19:30,840][1934158] Avg episode reward: 24.400, avg true_objective: 10.400
[2024-05-27 23:19:30,853][1934158] Num frames 2100...
[2024-05-27 23:19:30,916][1934158] Num frames 2200...
[2024-05-27 23:19:30,975][1934158] Num frames 2300...
[2024-05-27 23:19:31,035][1934158] Num frames 2400...
[2024-05-27 23:19:31,097][1934158] Num frames 2500...
[2024-05-27 23:19:31,155][1934158] Num frames 2600...
[2024-05-27 23:19:31,213][1934158] Num frames 2700...
[2024-05-27 23:19:31,271][1934158] Num frames 2800...
[2024-05-27 23:19:31,330][1934158] Num frames 2900...
[2024-05-27 23:19:31,392][1934158] Num frames 3000...
[2024-05-27 23:19:31,450][1934158] Num frames 3100...
[2024-05-27 23:19:31,505][1934158] Num frames 3200...
[2024-05-27 23:19:31,561][1934158] Num frames 3300...
[2024-05-27 23:19:31,668][1934158] Avg episode rewards: #0: 26.640, true rewards: #0: 11.307
[2024-05-27 23:19:31,668][1934158] Avg episode reward: 26.640, avg true_objective: 11.307
[2024-05-27 23:19:31,674][1934158] Num frames 3400...
[2024-05-27 23:19:31,733][1934158] Num frames 3500...
[2024-05-27 23:19:31,791][1934158] Num frames 3600...
[2024-05-27 23:19:31,849][1934158] Num frames 3700...
[2024-05-27 23:19:31,908][1934158] Num frames 3800...
[2024-05-27 23:19:31,961][1934158] Num frames 3900...
[2024-05-27 23:19:32,019][1934158] Num frames 4000...
[2024-05-27 23:19:32,075][1934158] Num frames 4100...
[2024-05-27 23:19:32,133][1934158] Num frames 4200...
[2024-05-27 23:19:32,237][1934158] Avg episode rewards: #0: 24.720, true rewards: #0: 10.720
[2024-05-27 23:19:32,237][1934158] Avg episode reward: 24.720, avg true_objective: 10.720
[2024-05-27 23:19:32,245][1934158] Num frames 4300...
[2024-05-27 23:19:32,301][1934158] Num frames 4400...
[2024-05-27 23:19:32,360][1934158] Num frames 4500...
[2024-05-27 23:19:32,418][1934158] Num frames 4600...
[2024-05-27 23:19:32,476][1934158] Num frames 4700...
[2024-05-27 23:19:32,545][1934158] Num frames 4800...
[2024-05-27 23:19:32,607][1934158] Num frames 4900...
[2024-05-27 23:19:32,667][1934158] Num frames 5000...
[2024-05-27 23:19:32,732][1934158] Num frames 5100...
[2024-05-27 23:19:32,794][1934158] Num frames 5200...
[2024-05-27 23:19:32,852][1934158] Num frames 5300...
[2024-05-27 23:19:32,906][1934158] Avg episode rewards: #0: 24.204, true rewards: #0: 10.604
[2024-05-27 23:19:32,906][1934158] Avg episode reward: 24.204, avg true_objective: 10.604
[2024-05-27 23:19:32,970][1934158] Num frames 5400...
[2024-05-27 23:19:33,037][1934158] Num frames 5500...
[2024-05-27 23:19:33,102][1934158] Num frames 5600...
[2024-05-27 23:19:33,165][1934158] Num frames 5700...
[2024-05-27 23:19:33,222][1934158] Num frames 5800...
[2024-05-27 23:19:33,310][1934158] Avg episode rewards: #0: 21.607, true rewards: #0: 9.773
[2024-05-27 23:19:33,310][1934158] Avg episode reward: 21.607, avg true_objective: 9.773
[2024-05-27 23:19:33,333][1934158] Num frames 5900...
[2024-05-27 23:19:33,482][1934158] Num frames 6000...
[2024-05-27 23:19:33,548][1934158] Num frames 6100...
[2024-05-27 23:19:33,609][1934158] Num frames 6200...
[2024-05-27 23:19:33,671][1934158] Num frames 6300...
[2024-05-27 23:19:33,734][1934158] Num frames 6400...
[2024-05-27 23:19:33,794][1934158] Num frames 6500...
[2024-05-27 23:19:33,856][1934158] Num frames 6600...
[2024-05-27 23:19:33,921][1934158] Num frames 6700...
[2024-05-27 23:19:33,978][1934158] Num frames 6800...
[2024-05-27 23:19:34,035][1934158] Num frames 6900...
[2024-05-27 23:19:34,144][1934158] Avg episode rewards: #0: 21.702, true rewards: #0: 9.987
[2024-05-27 23:19:34,144][1934158] Avg episode reward: 21.702, avg true_objective: 9.987
[2024-05-27 23:19:34,151][1934158] Num frames 7000...
[2024-05-27 23:19:34,217][1934158] Num frames 7100...
[2024-05-27 23:19:34,281][1934158] Num frames 7200...
[2024-05-27 23:19:34,341][1934158] Num frames 7300...
[2024-05-27 23:19:34,451][1934158] Num frames 7400...
[2024-05-27 23:19:34,510][1934158] Num frames 7500...
[2024-05-27 23:19:34,570][1934158] Num frames 7600...
[2024-05-27 23:19:34,634][1934158] Num frames 7700...
[2024-05-27 23:19:34,694][1934158] Num frames 7800...
[2024-05-27 23:19:34,781][1934158] Num frames 7900...
[2024-05-27 23:19:34,851][1934158] Num frames 8000...
[2024-05-27 23:19:34,933][1934158] Num frames 8100...
[2024-05-27 23:19:35,030][1934158] Num frames 8200...
[2024-05-27 23:19:35,099][1934158] Num frames 8300...
[2024-05-27 23:19:35,251][1934158] Num frames 8400...
[2024-05-27 23:19:35,382][1934158] Num frames 8500...
[2024-05-27 23:19:35,466][1934158] Num frames 8600...
[2024-05-27 23:19:35,533][1934158] Num frames 8700...
[2024-05-27 23:19:35,603][1934158] Num frames 8800...
[2024-05-27 23:19:35,672][1934158] Num frames 8900...
[2024-05-27 23:19:35,772][1934158] Num frames 9000...
[2024-05-27 23:19:35,903][1934158] Avg episode rewards: #0: 25.989, true rewards: #0: 11.364
[2024-05-27 23:19:35,903][1934158] Avg episode reward: 25.989, avg true_objective: 11.364
[2024-05-27 23:19:35,910][1934158] Num frames 9100...
[2024-05-27 23:19:35,989][1934158] Num frames 9200...
[2024-05-27 23:19:36,090][1934158] Num frames 9300...
[2024-05-27 23:19:36,194][1934158] Num frames 9400...
[2024-05-27 23:19:36,262][1934158] Num frames 9500...
[2024-05-27 23:19:36,364][1934158] Num frames 9600...
[2024-05-27 23:19:36,441][1934158] Avg episode rewards: #0: 24.039, true rewards: #0: 10.706
[2024-05-27 23:19:36,441][1934158] Avg episode reward: 24.039, avg true_objective: 10.706
[2024-05-27 23:19:36,491][1934158] Num frames 9700...
[2024-05-27 23:19:36,600][1934158] Num frames 9800...
[2024-05-27 23:19:36,669][1934158] Num frames 9900...
[2024-05-27 23:19:36,743][1934158] Num frames 10000...
[2024-05-27 23:19:36,810][1934158] Num frames 10100...
[2024-05-27 23:19:36,895][1934158] Avg episode rewards: #0: 22.550, true rewards: #0: 10.150
[2024-05-27 23:19:36,895][1934158] Avg episode reward: 22.550, avg true_objective: 10.150
[2024-05-27 23:19:49,448][1934158] Replay video saved to /media/fast/code/learning/train_dir/default_experiment/replay.mp4!
[2024-05-27 23:19:49,685][1934158] Loading existing experiment configuration from /media/fast/code/learning/train_dir/default_experiment/config.json
[2024-05-27 23:19:49,685][1934158] Overriding arg 'num_workers' with value 1 passed from command line
[2024-05-27 23:19:49,685][1934158] Adding new argument 'no_render'=True that is not in the saved config file!
[2024-05-27 23:19:49,685][1934158] Adding new argument 'save_video'=True that is not in the saved config file!
[2024-05-27 23:19:49,685][1934158] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2024-05-27 23:19:49,685][1934158] Adding new argument 'video_name'=None that is not in the saved config file!
[2024-05-27 23:19:49,685][1934158] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2024-05-27 23:19:49,685][1934158] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2024-05-27 23:19:49,685][1934158] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2024-05-27 23:19:49,685][1934158] Adding new argument 'hf_repository'='DavidPL1/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2024-05-27 23:19:49,685][1934158] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2024-05-27 23:19:49,685][1934158] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2024-05-27 23:19:49,685][1934158] Adding new argument 'train_script'=None that is not in the saved config file!
[2024-05-27 23:19:49,685][1934158] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2024-05-27 23:19:49,685][1934158] Using frameskip 1 and render_action_repeat=4 for evaluation
[2024-05-27 23:19:49,688][1934158] RunningMeanStd input shape: (3, 72, 128)
[2024-05-27 23:19:49,689][1934158] RunningMeanStd input shape: (1,)
[2024-05-27 23:19:49,694][1934158] ConvEncoder: input_channels=3
[2024-05-27 23:19:49,712][1934158] Conv encoder output size: 512
[2024-05-27 23:19:49,712][1934158] Policy head output size: 512
[2024-05-27 23:19:49,721][1934158] Loading state from checkpoint /media/fast/code/learning/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-05-27 23:19:50,123][1934158] Num frames 100...
[2024-05-27 23:19:50,179][1934158] Num frames 200...
[2024-05-27 23:19:50,237][1934158] Num frames 300...
[2024-05-27 23:19:50,298][1934158] Num frames 400...
[2024-05-27 23:19:50,364][1934158] Num frames 500...
[2024-05-27 23:19:50,424][1934158] Num frames 600...
[2024-05-27 23:19:50,483][1934158] Num frames 700...
[2024-05-27 23:19:50,544][1934158] Num frames 800...
[2024-05-27 23:19:50,615][1934158] Avg episode rewards: #0: 15.320, true rewards: #0: 8.320
[2024-05-27 23:19:50,616][1934158] Avg episode reward: 15.320, avg true_objective: 8.320
[2024-05-27 23:19:50,657][1934158] Num frames 900...
[2024-05-27 23:19:50,717][1934158] Num frames 1000...
[2024-05-27 23:19:50,777][1934158] Num frames 1100...
[2024-05-27 23:19:50,834][1934158] Num frames 1200...
[2024-05-27 23:19:50,898][1934158] Num frames 1300...
[2024-05-27 23:19:51,089][1934158] Num frames 1400...
[2024-05-27 23:19:51,192][1934158] Num frames 1500...
[2024-05-27 23:19:51,258][1934158] Num frames 1600...
[2024-05-27 23:19:51,324][1934158] Num frames 1700...
[2024-05-27 23:19:51,544][1934158] Num frames 1800...
[2024-05-27 23:19:51,627][1934158] Num frames 1900...
[2024-05-27 23:19:51,718][1934158] Num frames 2000...
[2024-05-27 23:19:51,785][1934158] Num frames 2100...
[2024-05-27 23:19:51,866][1934158] Avg episode rewards: #0: 23.700, true rewards: #0: 10.700
[2024-05-27 23:19:51,866][1934158] Avg episode reward: 23.700, avg true_objective: 10.700
[2024-05-27 23:19:51,915][1934158] Num frames 2200...
[2024-05-27 23:19:51,983][1934158] Num frames 2300...
[2024-05-27 23:19:52,098][1934158] Num frames 2400...
[2024-05-27 23:19:52,189][1934158] Num frames 2500...
[2024-05-27 23:19:52,259][1934158] Num frames 2600...
[2024-05-27 23:19:52,432][1934158] Num frames 2700...
[2024-05-27 23:19:52,507][1934158] Num frames 2800...
[2024-05-27 23:19:52,571][1934158] Num frames 2900...
[2024-05-27 23:19:52,754][1934158] Num frames 3000...
[2024-05-27 23:19:52,874][1934158] Num frames 3100...
[2024-05-27 23:19:52,940][1934158] Num frames 3200...
[2024-05-27 23:19:53,007][1934158] Num frames 3300...
[2024-05-27 23:19:53,074][1934158] Num frames 3400...
[2024-05-27 23:19:53,180][1934158] Avg episode rewards: #0: 26.280, true rewards: #0: 11.613
[2024-05-27 23:19:53,180][1934158] Avg episode reward: 26.280, avg true_objective: 11.613
[2024-05-27 23:19:53,191][1934158] Num frames 3500...
[2024-05-27 23:19:53,254][1934158] Num frames 3600...
[2024-05-27 23:19:53,331][1934158] Num frames 3700...
[2024-05-27 23:19:53,423][1934158] Num frames 3800...
[2024-05-27 23:19:53,511][1934158] Num frames 3900...
[2024-05-27 23:19:53,578][1934158] Num frames 4000...
[2024-05-27 23:19:53,649][1934158] Num frames 4100...
[2024-05-27 23:19:53,715][1934158] Num frames 4200...
[2024-05-27 23:19:53,811][1934158] Num frames 4300...
[2024-05-27 23:19:53,883][1934158] Num frames 4400...
[2024-05-27 23:19:53,953][1934158] Num frames 4500...
[2024-05-27 23:19:54,033][1934158] Num frames 4600...
[2024-05-27 23:19:54,114][1934158] Num frames 4700...
[2024-05-27 23:19:54,212][1934158] Avg episode rewards: #0: 26.830, true rewards: #0: 11.830
[2024-05-27 23:19:54,213][1934158] Avg episode reward: 26.830, avg true_objective: 11.830
[2024-05-27 23:19:54,258][1934158] Num frames 4800...
[2024-05-27 23:19:54,415][1934158] Num frames 4900...
[2024-05-27 23:19:54,590][1934158] Num frames 5000...
[2024-05-27 23:19:54,654][1934158] Num frames 5100...
[2024-05-27 23:19:54,722][1934158] Num frames 5200...
[2024-05-27 23:19:54,785][1934158] Num frames 5300...
[2024-05-27 23:19:54,876][1934158] Num frames 5400...
[2024-05-27 23:19:55,026][1934158] Num frames 5500...
[2024-05-27 23:19:55,145][1934158] Num frames 5600...
[2024-05-27 23:19:55,269][1934158] Num frames 5700...
[2024-05-27 23:19:55,339][1934158] Num frames 5800...
[2024-05-27 23:19:55,535][1934158] Num frames 5900...
[2024-05-27 23:19:55,627][1934158] Num frames 6000...
[2024-05-27 23:19:55,699][1934158] Num frames 6100...
[2024-05-27 23:19:55,766][1934158] Num frames 6200...
[2024-05-27 23:19:55,834][1934158] Num frames 6300...
[2024-05-27 23:19:55,900][1934158] Num frames 6400...
[2024-05-27 23:19:56,032][1934158] Num frames 6500...
[2024-05-27 23:19:56,229][1934158] Num frames 6600...
[2024-05-27 23:19:56,296][1934158] Num frames 6700...
[2024-05-27 23:19:56,406][1934158] Num frames 6800...
[2024-05-27 23:19:56,480][1934158] Avg episode rewards: #0: 33.064, true rewards: #0: 13.664
[2024-05-27 23:19:56,481][1934158] Avg episode reward: 33.064, avg true_objective: 13.664
[2024-05-27 23:19:56,526][1934158] Num frames 6900...
[2024-05-27 23:19:56,763][1934158] Num frames 7000...
[2024-05-27 23:19:56,865][1934158] Num frames 7100...
[2024-05-27 23:19:56,932][1934158] Num frames 7200...
[2024-05-27 23:19:57,014][1934158] Num frames 7300...
[2024-05-27 23:19:57,145][1934158] Avg episode rewards: #0: 29.163, true rewards: #0: 12.330
[2024-05-27 23:19:57,145][1934158] Avg episode reward: 29.163, avg true_objective: 12.330
[2024-05-27 23:19:57,147][1934158] Num frames 7400...
[2024-05-27 23:19:57,215][1934158] Num frames 7500...
[2024-05-27 23:19:57,399][1934158] Num frames 7600...
[2024-05-27 23:19:57,518][1934158] Num frames 7700...
[2024-05-27 23:19:57,586][1934158] Num frames 7800...
[2024-05-27 23:19:57,695][1934158] Num frames 7900...
[2024-05-27 23:19:57,823][1934158] Num frames 8000...
[2024-05-27 23:19:57,964][1934158] Num frames 8100...
[2024-05-27 23:19:58,032][1934158] Num frames 8200...
[2024-05-27 23:19:58,101][1934158] Num frames 8300...
[2024-05-27 23:19:58,168][1934158] Num frames 8400...
[2024-05-27 23:19:58,262][1934158] Num frames 8500...
[2024-05-27 23:19:58,340][1934158] Num frames 8600...
[2024-05-27 23:19:58,411][1934158] Num frames 8700...
[2024-05-27 23:19:58,523][1934158] Num frames 8800...
[2024-05-27 23:19:58,660][1934158] Num frames 8900...
[2024-05-27 23:19:58,727][1934158] Num frames 9000...
[2024-05-27 23:19:58,802][1934158] Num frames 9100...
[2024-05-27 23:19:59,012][1934158] Num frames 9200...
[2024-05-27 23:19:59,116][1934158] Num frames 9300...
[2024-05-27 23:19:59,185][1934158] Num frames 9400...
[2024-05-27 23:19:59,306][1934158] Avg episode rewards: #0: 33.711, true rewards: #0: 13.569
[2024-05-27 23:19:59,306][1934158] Avg episode reward: 33.711, avg true_objective: 13.569
[2024-05-27 23:19:59,307][1934158] Num frames 9500...
[2024-05-27 23:19:59,421][1934158] Num frames 9600...
[2024-05-27 23:19:59,512][1934158] Num frames 9700...
[2024-05-27 23:19:59,576][1934158] Num frames 9800...
[2024-05-27 23:19:59,647][1934158] Num frames 9900...
[2024-05-27 23:19:59,729][1934158] Avg episode rewards: #0: 30.182, true rewards: #0: 12.433
[2024-05-27 23:19:59,729][1934158] Avg episode reward: 30.182, avg true_objective: 12.433
[2024-05-27 23:19:59,775][1934158] Num frames 10000...
[2024-05-27 23:19:59,844][1934158] Num frames 10100...
[2024-05-27 23:19:59,909][1934158] Num frames 10200...
[2024-05-27 23:20:00,028][1934158] Num frames 10300...
[2024-05-27 23:20:00,151][1934158] Num frames 10400...
[2024-05-27 23:20:00,252][1934158] Num frames 10500...
[2024-05-27 23:20:00,320][1934158] Num frames 10600...
[2024-05-27 23:20:00,496][1934158] Num frames 10700...
[2024-05-27 23:20:00,583][1934158] Num frames 10800...
[2024-05-27 23:20:00,669][1934158] Num frames 10900...
[2024-05-27 23:20:00,763][1934158] Num frames 11000...
[2024-05-27 23:20:00,883][1934158] Num frames 11100...
[2024-05-27 23:20:00,972][1934158] Num frames 11200...
[2024-05-27 23:20:01,045][1934158] Num frames 11300...
[2024-05-27 23:20:01,140][1934158] Num frames 11400...
[2024-05-27 23:20:01,322][1934158] Num frames 11500...
[2024-05-27 23:20:01,404][1934158] Avg episode rewards: #0: 31.269, true rewards: #0: 12.824
[2024-05-27 23:20:01,404][1934158] Avg episode reward: 31.269, avg true_objective: 12.824
[2024-05-27 23:20:01,495][1934158] Num frames 11600...
[2024-05-27 23:20:01,560][1934158] Num frames 11700...
[2024-05-27 23:20:01,631][1934158] Num frames 11800...
[2024-05-27 23:20:01,747][1934158] Num frames 11900...
[2024-05-27 23:20:01,829][1934158] Num frames 12000...
[2024-05-27 23:20:01,911][1934158] Num frames 12100...
[2024-05-27 23:20:02,025][1934158] Num frames 12200...
[2024-05-27 23:20:02,094][1934158] Num frames 12300...
[2024-05-27 23:20:02,161][1934158] Num frames 12400...
[2024-05-27 23:20:02,230][1934158] Num frames 12500...
[2024-05-27 23:20:02,301][1934158] Num frames 12600...
[2024-05-27 23:20:02,394][1934158] Avg episode rewards: #0: 30.430, true rewards: #0: 12.630
[2024-05-27 23:20:02,394][1934158] Avg episode reward: 30.430, avg true_objective: 12.630
[2024-05-27 23:20:17,697][1934158] Replay video saved to /media/fast/code/learning/train_dir/default_experiment/replay.mp4!