See axolotl config
axolotl version: 0.4.0
base_model: codellama/CodeLlama-34b-hf
model_type: LlamaForCausalLM
tokenizer_type: CodeLlamaTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: iamtarun/code_instructions_120k_alpaca
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./maverick34b
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
maverick34b
This model is a fine-tuned version of codellama/CodeLlama-34b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3391
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 7
- gradient_accumulation_steps: 4
- total_train_batch_size: 56
- total_eval_batch_size: 14
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5065 | 0.01 | 1 | 0.5089 |
0.3477 | 0.25 | 29 | 0.3561 |
0.3593 | 0.51 | 58 | 0.3461 |
0.3329 | 0.76 | 87 | 0.3423 |
0.3607 | 1.0 | 116 | 0.3404 |
0.3336 | 1.26 | 145 | 0.3395 |
0.3449 | 1.51 | 174 | 0.3386 |
0.3187 | 1.77 | 203 | 0.3377 |
0.3216 | 2.0 | 232 | 0.3371 |
0.2961 | 2.26 | 261 | 0.3380 |
0.3117 | 2.51 | 290 | 0.3381 |
0.3207 | 2.77 | 319 | 0.3379 |
0.3047 | 3.01 | 348 | 0.3376 |
0.3096 | 3.26 | 377 | 0.3391 |
0.3148 | 3.52 | 406 | 0.3391 |
0.3116 | 3.77 | 435 | 0.3391 |
Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.17.0
- Tokenizers 0.15.0
- Downloads last month
- 4
Model tree for Deadwalker0/maverick-34b-qlora
Base model
codellama/CodeLlama-34b-hf