DeepMount00's picture
Update README.md
b512732 verified
|
raw
history blame
2.55 kB
<h1 style="font-size: 48px; text-align: center;">Alireo-400M ๐Ÿค– ๐Ÿ‡ฎ๐Ÿ‡น</h1>
<p style="font-size: 24px; text-align: center;">A Lightweight Italian Language Model</p>
<h2 style="font-size: 32px; color: #2980b9;">Model Description ๐Ÿ“</h2>
Alireo-400M is a lightweight yet powerful Italian language model with 400M parameters, designed to provide efficient natural language processing capabilities while maintaining a smaller footprint compared to larger models.
<h2 style="font-size: 32px; color: #2980b9;">Key Features โœจ</h2>
* **Architecture**: Transformer-based language model ๐Ÿ—๏ธ
* **Parameters**: 400M ๐Ÿ“Š
* **Context Window**: 8K tokens ๐ŸชŸ
* **Training Data**: Curated Italian text corpus (books, articles, web content) ๐Ÿ“š
* **Model Size**: ~800MB ๐Ÿ’พ
<h2 style="font-size: 32px; color: #2980b9;">Performance ๐Ÿ“ˆ</h2>
Despite its compact size, Alireo-400M demonstrates impressive performance:
* **Benchmark Results**: Outperforms Qwen 0.5B across multiple benchmarks ๐Ÿ†
* **Language Understanding**: Maintains high accuracy in Italian language understanding tasks ๐ŸŽฏ
* **Speed**: Efficient inference speed due to optimized architecture โšก
<h2 style="font-size: 32px; color: #2980b9;">Limitations โš ๏ธ</h2>
* Limited context window compared to larger models
* May struggle with highly specialized technical content
* Performance may vary on dialectal variations
* Not suitable for multilingual tasks
<h2 style="font-size: 32px; color: #2980b9;">Hardware Requirements ๐Ÿ’ป</h2>
* **Minimum RAM**: 2GB
* **Recommended RAM**: 4GB
* **GPU**: Optional, but recommended for faster inference
* **Disk Space**: ~1GB (including model and dependencies)
<h2 style="font-size: 32px; color: #2980b9;">Usage Example ๐Ÿ’ก</h2>
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("montebovi/alireo-400m")
tokenizer = AutoTokenizer.from_pretrained("montebovi/alireo-400m")
# Example text
text = "L'intelligenza artificiale sta"
# Tokenize and generate
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
```
<h2 style="font-size: 32px; color: #2980b9;">License ๐Ÿ“œ</h2>
Apache 2.0
<h2 style="font-size: 32px; color: #2980b9;">Citation ๐Ÿ“„</h2>
```bibtex
@software{alireo2024,
author = {[Michele Montebovi]},
title = {Alireo-400M: A Lightweight Italian Language Model},
year = {2024},
}
```