|
<h1 style="font-size: 48px; text-align: center;">Alireo-400M ๐ค ๐ฎ๐น</h1> |
|
<p style="font-size: 24px; text-align: center;">A Lightweight Italian Language Model</p> |
|
|
|
<h2 style="font-size: 32px; color: #2980b9;">Model Description ๐</h2> |
|
|
|
Alireo-400M is a lightweight yet powerful Italian language model with 400M parameters, designed to provide efficient natural language processing capabilities while maintaining a smaller footprint compared to larger models. |
|
|
|
<h2 style="font-size: 32px; color: #2980b9;">Key Features โจ</h2> |
|
|
|
* **Architecture**: Transformer-based language model ๐๏ธ |
|
* **Parameters**: 400M ๐ |
|
* **Context Window**: 8K tokens ๐ช |
|
* **Training Data**: Curated Italian text corpus (books, articles, web content) ๐ |
|
* **Model Size**: ~800MB ๐พ |
|
|
|
<h2 style="font-size: 32px; color: #2980b9;">Performance ๐</h2> |
|
|
|
Despite its compact size, Alireo-400M demonstrates impressive performance: |
|
|
|
* **Benchmark Results**: Outperforms Qwen 0.5B across multiple benchmarks ๐ |
|
* **Language Understanding**: Maintains high accuracy in Italian language understanding tasks ๐ฏ |
|
* **Speed**: Efficient inference speed due to optimized architecture โก |
|
|
|
<h2 style="font-size: 32px; color: #2980b9;">Limitations โ ๏ธ</h2> |
|
|
|
* Limited context window compared to larger models |
|
* May struggle with highly specialized technical content |
|
* Performance may vary on dialectal variations |
|
* Not suitable for multilingual tasks |
|
|
|
<h2 style="font-size: 32px; color: #2980b9;">Hardware Requirements ๐ป</h2> |
|
|
|
* **Minimum RAM**: 2GB |
|
* **Recommended RAM**: 4GB |
|
* **GPU**: Optional, but recommended for faster inference |
|
* **Disk Space**: ~1GB (including model and dependencies) |
|
|
|
<h2 style="font-size: 32px; color: #2980b9;">Usage Example ๐ก</h2> |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Load model and tokenizer |
|
model = AutoModelForCausalLM.from_pretrained("montebovi/alireo-400m") |
|
tokenizer = AutoTokenizer.from_pretrained("montebovi/alireo-400m") |
|
|
|
# Example text |
|
text = "L'intelligenza artificiale sta" |
|
|
|
# Tokenize and generate |
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=50) |
|
result = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(result) |
|
``` |
|
|
|
<h2 style="font-size: 32px; color: #2980b9;">License ๐</h2> |
|
|
|
Apache 2.0 |
|
|
|
<h2 style="font-size: 32px; color: #2980b9;">Citation ๐</h2> |
|
|
|
```bibtex |
|
@software{alireo2024, |
|
author = {[Michele Montebovi]}, |
|
title = {Alireo-400M: A Lightweight Italian Language Model}, |
|
year = {2024}, |
|
} |
|
``` |