|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: 21BAI1229 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 21BAI1229 |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4078 |
|
- Accuracy: 0.8734 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:| |
|
| 2.6034 | 0.9873 | 39 | 2.0544 | 0.4520 | |
|
| 1.4429 | 2.0 | 79 | 0.7736 | 0.7849 | |
|
| 0.8307 | 2.9873 | 118 | 0.5456 | 0.8413 | |
|
| 0.6814 | 4.0 | 158 | 0.4881 | 0.8516 | |
|
| 0.6199 | 4.9873 | 197 | 0.4614 | 0.8528 | |
|
| 0.5578 | 6.0 | 237 | 0.4419 | 0.8615 | |
|
| 0.5198 | 6.9873 | 276 | 0.4485 | 0.8603 | |
|
| 0.4811 | 8.0 | 316 | 0.4355 | 0.8659 | |
|
| 0.4568 | 8.9873 | 355 | 0.4182 | 0.8651 | |
|
| 0.4268 | 10.0 | 395 | 0.4094 | 0.8702 | |
|
| 0.4281 | 10.9873 | 434 | 0.4158 | 0.8706 | |
|
| 0.4143 | 12.0 | 474 | 0.4078 | 0.8734 | |
|
| 0.4009 | 12.9873 | 513 | 0.4066 | 0.8714 | |
|
| 0.3642 | 14.0 | 553 | 0.4131 | 0.8683 | |
|
| 0.3659 | 14.9873 | 592 | 0.4047 | 0.8726 | |
|
| 0.3487 | 16.0 | 632 | 0.4054 | 0.8710 | |
|
| 0.35 | 16.9873 | 671 | 0.4107 | 0.8722 | |
|
| 0.3291 | 18.0 | 711 | 0.4099 | 0.8698 | |
|
| 0.338 | 18.9873 | 750 | 0.4063 | 0.8718 | |
|
| 0.3419 | 19.7468 | 780 | 0.4066 | 0.8702 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|