general_model / README.md
Dhanang's picture
End of training
e683e51 verified
|
raw
history blame
2.38 kB
metadata
license: mit
base_model: indobenchmark/indobert-base-p2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: general_model
    results: []

general_model

This model is a fine-tuned version of indobenchmark/indobert-base-p2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2535
  • Accuracy: 0.9132
  • F1: 0.9412
  • Precision: 0.9286
  • Recall: 0.9542

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3084 1.0 795 0.2535 0.9132 0.9412 0.9286 0.9542
0.2129 2.0 1590 0.2975 0.9056 0.9369 0.9131 0.9620
0.1516 3.0 2385 0.3605 0.9043 0.9346 0.9314 0.9378
0.095 4.0 3180 0.5394 0.8943 0.9301 0.8973 0.9655
0.076 5.0 3975 0.5923 0.8955 0.9292 0.9182 0.9404
0.0399 6.0 4770 0.5995 0.8899 0.9247 0.9212 0.9283
0.0288 7.0 5565 0.7001 0.8930 0.9261 0.9326 0.9197
0.0178 8.0 6360 0.7846 0.8930 0.9285 0.9049 0.9534
0.0083 9.0 7155 0.7989 0.8943 0.9288 0.9125 0.9456
0.0063 10.0 7950 0.8204 0.8924 0.9276 0.9102 0.9456

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0