Edit model card

sentiment_model

This model is a fine-tuned version of indobenchmark/indobert-base-p2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1665
  • Accuracy: 0.9720
  • F1: 0.9259
  • Precision: 0.9615
  • Recall: 0.8929

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 72 0.2060 0.9510 0.8727 0.8889 0.8571
No log 2.0 144 0.2337 0.9580 0.8846 0.9583 0.8214
No log 3.0 216 0.2416 0.9441 0.8571 0.8571 0.8571
No log 4.0 288 0.1905 0.9580 0.8846 0.9583 0.8214
No log 5.0 360 0.2029 0.9580 0.8929 0.8929 0.8929
No log 6.0 432 0.1665 0.9720 0.9259 0.9615 0.8929
0.0706 7.0 504 0.1899 0.9580 0.8889 0.9231 0.8571
0.0706 8.0 576 0.1990 0.9580 0.8889 0.9231 0.8571
0.0706 9.0 648 0.2139 0.9580 0.8889 0.9231 0.8571
0.0706 10.0 720 0.2171 0.9580 0.8889 0.9231 0.8571

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
8
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Dhanang/sentiment_model

Finetuned
(35)
this model