Age_and_Gender_Detection / Facial_Age_and_Gender_Detection.py
Dhrumit1314's picture
Upload 3 files
aca4b90 verified
raw
history blame
6.84 kB
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 29 15:05:30 2024
@author: Dhrumit Patel
"""
"""
Dataset: UTKFace
https://www.kaggle.com/datasets/jangedoo/utkface-new?resource=download
"""
import pandas as pd
import numpy as np
import tensorflow as tf
import os
import matplotlib.pyplot as plt
import cv2
from keras.models import Sequential, Model, load_model
from keras.layers import Conv2D, MaxPool2D, Dense, Dropout, BatchNormalization, Flatten, Input
from sklearn.model_selection import train_test_split
path = 'data/UTKFace'
images = []
age = []
gender = []
for img in os.listdir(path):
ages = img.split("_")[0]
genders = img.split("_")[1]
img = cv2.imread(str(path) + "/" + str(img))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
images.append(np.array(img))
age.append(np.array(ages))
gender.append(np.array(genders))
images = np.array(images)
images = images / 255.0
age = np.array(age, dtype=np.int64)
gender = np.array(gender, dtype=np.int64)
# np.save('preprocessed_data/images.npy', images)
# np.save('preprocessed_data/age.npy', age)
# np.save('preprocessed_data/gender.npy', gender)
# images = np.load('preprocessed_data/images.npy')
# age = np.load('preprocessed_data/age.npy')
# gender = np.load('preprocessed_data/gender.npy')
X_train_age, X_test_age, y_train_age, y_test_age = train_test_split(images, age, random_state=42)
X_train_gender, X_test_gender, y_train_gender, y_test_gender = train_test_split(images, gender, random_state=42)
# Define the model - For Age
age_model = Sequential()
age_model.add(Conv2D(128, kernel_size=3, activation='relu', input_shape=(200,200,3)))
age_model.add(MaxPool2D(pool_size=3, strides=2))
age_model.add(Conv2D(128, kernel_size=3, activation='relu'))
age_model.add(MaxPool2D(pool_size=3, strides=2))
age_model.add(Conv2D(256, kernel_size=3, activation='relu'))
age_model.add(MaxPool2D(pool_size=3, strides=2))
age_model.add(Conv2D(512, kernel_size=3, activation='relu'))
age_model.add(MaxPool2D(pool_size=3, strides=2))
age_model.add(Flatten())
age_model.add(Dropout(0.2))
age_model.add(Dense(512, activation='relu'))
age_model.add(Dense(1, activation='linear', name='age'))
age_model.compile(optimizer='adam', loss='mse', metrics=['mae'])
age_model.summary()
# TODO: Fit for 10 epochs
with tf.device('/CPU:0'):
history_age = age_model.fit(X_train_age, y_train_age,
epochs=10,
validation_data=(X_test_age, y_test_age))
age_model.save('models/age_model_10epochs.h5')
# Define the model - For Gender
gender_model = Sequential()
gender_model.add(Conv2D(36, kernel_size=3, activation='relu', input_shape=(200,200,3)))
gender_model.add(MaxPool2D(pool_size=3, strides=2))
gender_model.add(Conv2D(64, kernel_size=3, activation='relu'))
gender_model.add(MaxPool2D(pool_size=3, strides=2))
gender_model.add(Conv2D(128, kernel_size=3, activation='relu'))
gender_model.add(MaxPool2D(pool_size=3, strides=2))
gender_model.add(Conv2D(256, kernel_size=3, activation='relu'))
gender_model.add(MaxPool2D(pool_size=3, strides=2))
gender_model.add(Conv2D(512, kernel_size=3, activation='relu'))
gender_model.add(MaxPool2D(pool_size=3, strides=2))
gender_model.add(Flatten())
gender_model.add(Dropout(0.2))
gender_model.add(Dense(512, activation='relu'))
gender_model.add(Dense(1, activation='sigmoid', name='gender'))
gender_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
gender_model.summary()
# TODO: Fit for 10 epochs
with tf.device('/CPU:0'):
history_gender = gender_model.fit(X_train_gender, y_train_gender,
epochs=10,
validation_data=(X_test_gender, y_test_gender))
gender_model.save('models/gender_model_10epochs.h5')
# Plot the training and validation accuracy and loss at each epoch - For Age model
loss = history_age.history['loss']
val_loss = history_age.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'y', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss for Age model')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
acc = history_age.history['accuracy']
val_acc = history_age.history['val_accuracy']
plt.plot(epochs, acc, 'y', label='Training Accuracy')
plt.plot(epochs, val_acc, 'r', label='Validation Accuracy')
plt.title('Training and validation accuracy for Age model')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
# Plot the training and validation accuracy and loss at each epoch - For Gender model
loss = history_gender.history['loss']
val_loss = history_gender.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'y', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss for Gender model')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
acc = history_gender.history['accuracy']
val_acc = history_gender.history['val_accuracy']
plt.plot(epochs, acc, 'y', label='Training Accuracy')
plt.plot(epochs, val_acc, 'r', label='Validation Accuracy')
plt.title('Training and validation accuracy for Gender model')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
# Test the model - Gender Model
my_model_gender = load_model('models/gender_model_3epochs.h5')
with tf.device('/CPU:0'):
predictions = my_model_gender.predict(X_test_gender)
y_pred = (predictions >= 0.5).astype(int)[:, 0]
from sklearn.metrics import accuracy_score, confusion_matrix
import seaborn as sns
print(f"Accuracy: {accuracy_score(y_true=y_test_gender, y_pred=y_pred)}")
# Confusion matrix
cm = confusion_matrix(y_true=y_test_gender, y_pred=y_pred)
sns.heatmap(cm, annot=True, fmt='d')
# Test the model - Age Model
# Saving the models to huggingface
from transformers import TFAutoModel
import tensorflow as tf
# Load your TensorFlow model from the .h5 file
age_model = tf.keras.models.load_model('models/age_model_3epochs.h5')
gender_model = tf.keras.models.load_model('models/gender_model_3epochs.h5')
# Save the model weights
age_model.save_weights('age_model_weights.h5')
gender_model.save_weights('gender_model_weights.h5')
# Load the architecture of the Hugging Face model you want to use
# For example, if you're using BERT, you would use TFBertModel
hf_model_age = TFAutoModel.from_pretrained('bert-base-uncased')
hf_model_gender = TFAutoModel.from_pretrained('bert-base-uncased')
# Load the weights into the Hugging Face model
hf_model_age.load_weights('age_model_weights.h5')
hf_model_gender.load_weights('gender_model_weights.h5')
# Save the Hugging Face model
hf_model_age.save_pretrained('hf_age_model')
hf_model_gender.save_pretrained('hf_gender_model')