File size: 10,577 Bytes
a39e224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import tensorflow as tf
# Create a function to import an image and resize it to be able to be used with our model
def load_and_prep_image(filename, img_shape=224, scale=True):
"""
Reads in an image from filename, turns it into a tensor and reshapes into
(224, 224, 3).
Parameters
----------
filename (str): string filename of target image
img_shape (int): size to resize target image to, default 224
scale (bool): whether to scale pixel values to range(0, 1), default True
"""
# Read in the image
img = tf.io.read_file(filename)
# Decode it into a tensor
img = tf.image.decode_jpeg(img)
# Resize the image
img = tf.image.resize(img, [img_shape, img_shape])
if scale:
# Rescale the image (get all values between 0 and 1)
return img/255.
else:
return img
# Note: The following confusion matrix code is a remix of Scikit-Learn's
# plot_confusion_matrix function - https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_confusion_matrix.html
import itertools
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import confusion_matrix
# Our function needs a different name to sklearn's plot_confusion_matrix
def make_confusion_matrix(y_true, y_pred, classes=None, figsize=(10, 10), text_size=15, norm=False, savefig=False):
"""Makes a labelled confusion matrix comparing predictions and ground truth labels.
If classes is passed, confusion matrix will be labelled, if not, integer class values
will be used.
Args:
y_true: Array of truth labels (must be same shape as y_pred).
y_pred: Array of predicted labels (must be same shape as y_true).
classes: Array of class labels (e.g. string form). If `None`, integer labels are used.
figsize: Size of output figure (default=(10, 10)).
text_size: Size of output figure text (default=15).
norm: normalize values or not (default=False).
savefig: save confusion matrix to file (default=False).
Returns:
A labelled confusion matrix plot comparing y_true and y_pred.
Example usage:
make_confusion_matrix(y_true=test_labels, # ground truth test labels
y_pred=y_preds, # predicted labels
classes=class_names, # array of class label names
figsize=(15, 15),
text_size=10)
"""
# Create the confustion matrix
cm = confusion_matrix(y_true, y_pred)
cm_norm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] # normalize it
n_classes = cm.shape[0] # find the number of classes we're dealing with
# Plot the figure and make it pretty
fig, ax = plt.subplots(figsize=figsize)
cax = ax.matshow(cm, cmap=plt.cm.Blues) # colors will represent how 'correct' a class is, darker == better
fig.colorbar(cax)
# Are there a list of classes?
if classes:
labels = classes
else:
labels = np.arange(cm.shape[0])
# Label the axes
ax.set(title="Confusion Matrix",
xlabel="Predicted label",
ylabel="True label",
xticks=np.arange(n_classes), # create enough axis slots for each class
yticks=np.arange(n_classes),
xticklabels=labels, # axes will labeled with class names (if they exist) or ints
yticklabels=labels)
# Make x-axis labels appear on bottom
ax.xaxis.set_label_position("bottom")
ax.xaxis.tick_bottom()
# Set the threshold for different colors
threshold = (cm.max() + cm.min()) / 2.
# Plot the text on each cell
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if norm:
plt.text(j, i, f"{cm[i, j]} ({cm_norm[i, j]*100:.1f}%)",
horizontalalignment="center",
color="white" if cm[i, j] > threshold else "black",
size=text_size)
else:
plt.text(j, i, f"{cm[i, j]}",
horizontalalignment="center",
color="white" if cm[i, j] > threshold else "black",
size=text_size)
# Save the figure to the current working directory
if savefig:
fig.savefig("confusion_matrix.png")
# Make a function to predict on images and plot them (works with multi-class)
def pred_and_plot(model, filename, class_names):
"""
Imports an image located at filename, makes a prediction on it with
a trained model and plots the image with the predicted class as the title.
"""
# Import the target image and preprocess it
img = load_and_prep_image(filename)
# Make a prediction
pred = model.predict(tf.expand_dims(img, axis=0))
# Get the predicted class
if len(pred[0]) > 1: # check for multi-class
pred_class = class_names[pred.argmax()] # if more than one output, take the max
else:
pred_class = class_names[int(tf.round(pred)[0][0])] # if only one output, round
# Plot the image and predicted class
plt.imshow(img)
plt.title(f"Prediction: {pred_class}")
plt.axis(False);
import datetime
def create_tensorboard_callback(dir_name, experiment_name):
"""
Creates a TensorBoard callback instance to store log files.
Stores log files with the filepath:
"dir_name/experiment_name/current_datetime/"
Args:
dir_name: target directory to store TensorBoard log files
experiment_name: name of experiment directory (e.g. efficientnet_model_1)
"""
log_dir = dir_name + "/" + experiment_name + "/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=log_dir
)
print(f"Saving TensorBoard log files to: {log_dir}")
return tensorboard_callback
# Plot the validation and training data separately
import matplotlib.pyplot as plt
def plot_loss_curves(history):
"""
Returns separate loss curves for training and validation metrics.
Args:
history: TensorFlow model History object (see: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/History)
"""
loss = history.history['loss']
val_loss = history.history['val_loss']
accuracy = history.history['accuracy']
val_accuracy = history.history['val_accuracy']
epochs = range(len(history.history['loss']))
# Plot loss
plt.plot(epochs, loss, label='training_loss')
plt.plot(epochs, val_loss, label='val_loss')
plt.title('Loss')
plt.xlabel('Epochs')
plt.legend()
# Plot accuracy
plt.figure()
plt.plot(epochs, accuracy, label='training_accuracy')
plt.plot(epochs, val_accuracy, label='val_accuracy')
plt.title('Accuracy')
plt.xlabel('Epochs')
plt.legend();
def compare_historys(original_history, new_history, initial_epochs=5):
"""
Compares two TensorFlow model History objects.
Args:
original_history: History object from original model (before new_history)
new_history: History object from continued model training (after original_history)
initial_epochs: Number of epochs in original_history (new_history plot starts from here)
"""
# Get original history measurements
acc = original_history.history["accuracy"]
loss = original_history.history["loss"]
val_acc = original_history.history["val_accuracy"]
val_loss = original_history.history["val_loss"]
# Combine original history with new history
total_acc = acc + new_history.history["accuracy"]
total_loss = loss + new_history.history["loss"]
total_val_acc = val_acc + new_history.history["val_accuracy"]
total_val_loss = val_loss + new_history.history["val_loss"]
# Make plots
plt.figure(figsize=(8, 8))
plt.subplot(2, 1, 1)
plt.plot(total_acc, label='Training Accuracy')
plt.plot(total_val_acc, label='Validation Accuracy')
plt.plot([initial_epochs-1, initial_epochs-1],
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(2, 1, 2)
plt.plot(total_loss, label='Training Loss')
plt.plot(total_val_loss, label='Validation Loss')
plt.plot([initial_epochs-1, initial_epochs-1],
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.xlabel('epoch')
plt.show()
# Create function to unzip a zipfile into current working directory
# (since we're going to be downloading and unzipping a few files)
import zipfile
def unzip_data(filename):
"""
Unzips filename into the current working directory.
Args:
filename (str): a filepath to a target zip folder to be unzipped.
"""
zip_ref = zipfile.ZipFile(filename, "r")
zip_ref.extractall()
zip_ref.close()
# Download and unzip file
import zipfile
import requests
import os
def download_and_unzip(url, target_folder):
# Download the file from url and save it
filename = os.path.join(target_folder, os.path.basename(url))
with open(filename, 'wb') as f:
r = requests.get(url)
f.write(r.content)
# Unzip the downloaded file
with zipfile.ZipFile(filename, 'r') as zip_ref:
zip_ref.extractall(target_folder)
# Walk through an image classification directory and find out how many files (images)
# are in each subdirectory.
import os
def walk_through_dir(dir_path):
"""
Walks through dir_path returning its contents.
Args:
dir_path (str): target directory
Returns:
A print out of:
number of subdiretories in dir_path
number of images (files) in each subdirectory
name of each subdirectory
"""
for dirpath, dirnames, filenames in os.walk(dir_path):
print(f"There are {len(dirnames)} directories and {len(filenames)} images in '{dirpath}'.")
# Function to evaluate: accuracy, precision, recall, f1-score
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
def calculate_results(y_true, y_pred):
"""
Calculates model accuracy, precision, recall and f1 score of a binary classification model.
Args:
y_true: true labels in the form of a 1D array
y_pred: predicted labels in the form of a 1D array
Returns a dictionary of accuracy, precision, recall, f1-score.
"""
# Calculate model accuracy
model_accuracy = accuracy_score(y_true, y_pred) * 100
# Calculate model precision, recall and f1 score using "weighted average
model_precision, model_recall, model_f1, _ = precision_recall_fscore_support(y_true, y_pred, average="weighted")
model_results = {"accuracy": model_accuracy,
"precision": model_precision,
"recall": model_recall,
"f1": model_f1}
return model_results
|