binarization-segformer-b3
This model is a fine-tuned version of nvidia/segformer-b3-1024-1024 on the same ensemble of 13 datasets as the SauvolaNet work publicly available in their GitHub repository.
It achieves the following results on the evaluation set on DIBCO metrics:
- loss: 0.0743
- DRD: 5.9548
- F-measure: 0.9840
- pseudo F-measure: 0.9740
- PSNR: 16.0119
with PSNR the peak signal-to-noise ratio and DRD the distance reciprocal distortion.
For more information on the above DIBCO metrics, see the 2017 introductory paper.
Model description
This model is part of on-going research on pure semantic segmentation models as a formulation of document image binarization (DIBCO). This is in contrast to the late trend of adapting classical binarization algorithms with neural networks, such as DeepOtsu or SauvolaNet as extensions of Otsu's method and Sauvola thresholding algorithm, respectively.
Intended uses & limitations
TBC
Training and evaluation data
TBC
Training procedure
Training hyperparameters
TBC
Training results
training loss | epoch | step | validation loss | DRD | F-measure | pseudo F-measure | PSNR |
---|---|---|---|---|---|---|---|
0.6983 | 0.26 | 10 | 0.7079 | 199.5096 | 0.5945 | 0.5801 | 3.4552 |
0.6657 | 0.52 | 20 | 0.6755 | 149.2346 | 0.7006 | 0.6165 | 4.6752 |
0.6145 | 0.77 | 30 | 0.6433 | 109.7298 | 0.7831 | 0.6520 | 5.5489 |
0.5553 | 1.03 | 40 | 0.5443 | 53.7149 | 0.8952 | 0.8000 | 8.1736 |
0.4627 | 1.29 | 50 | 0.4896 | 32.7649 | 0.9321 | 0.8603 | 9.8706 |
0.3969 | 1.55 | 60 | 0.4327 | 21.5508 | 0.9526 | 0.8985 | 11.3400 |
0.3414 | 1.81 | 70 | 0.3002 | 11.0094 | 0.9732 | 0.9462 | 13.5901 |
0.2898 | 2.06 | 80 | 0.2839 | 10.1064 | 0.9748 | 0.9563 | 13.9796 |
0.2292 | 2.32 | 90 | 0.2427 | 9.4437 | 0.9761 | 0.9584 | 14.2161 |
0.2153 | 2.58 | 100 | 0.2095 | 8.8696 | 0.9771 | 0.9621 | 14.4319 |
0.1767 | 2.84 | 110 | 0.1916 | 8.6152 | 0.9776 | 0.9646 | 14.5528 |
0.1509 | 3.1 | 120 | 0.1704 | 8.0761 | 0.9791 | 0.9632 | 14.7961 |
0.1265 | 3.35 | 130 | 0.1561 | 8.5627 | 0.9784 | 0.9655 | 14.7400 |
0.132 | 3.61 | 140 | 0.1318 | 8.1849 | 0.9788 | 0.9670 | 14.8469 |
0.1115 | 3.87 | 150 | 0.1317 | 7.8438 | 0.9790 | 0.9657 | 14.9072 |
0.0983 | 4.13 | 160 | 0.1273 | 7.9405 | 0.9791 | 0.9673 | 14.9701 |
0.1001 | 4.39 | 170 | 0.1234 | 8.4132 | 0.9788 | 0.9691 | 14.8573 |
0.0862 | 4.65 | 180 | 0.1147 | 8.0838 | 0.9797 | 0.9678 | 15.0433 |
0.0713 | 4.9 | 190 | 0.1134 | 7.6027 | 0.9806 | 0.9687 | 15.2235 |
0.0905 | 5.16 | 200 | 0.1061 | 7.2973 | 0.9803 | 0.9699 | 15.1646 |
0.0902 | 5.42 | 210 | 0.1061 | 8.4049 | 0.9787 | 0.9699 | 14.8460 |
0.0759 | 5.68 | 220 | 0.1062 | 7.7147 | 0.9809 | 0.9695 | 15.2426 |
0.0638 | 5.94 | 230 | 0.1019 | 7.7449 | 0.9806 | 0.9695 | 15.2195 |
0.0852 | 6.19 | 240 | 0.0962 | 7.0221 | 0.9817 | 0.9693 | 15.4730 |
0.0677 | 6.45 | 250 | 0.0961 | 7.2520 | 0.9814 | 0.9710 | 15.3878 |
0.0668 | 6.71 | 260 | 0.0972 | 6.6658 | 0.9823 | 0.9689 | 15.6106 |
0.0701 | 6.97 | 270 | 0.0909 | 6.9454 | 0.9820 | 0.9713 | 15.5458 |
0.0567 | 7.23 | 280 | 0.0925 | 6.5498 | 0.9824 | 0.9718 | 15.5965 |
0.0624 | 7.48 | 290 | 0.0899 | 7.3125 | 0.9813 | 0.9717 | 15.3255 |
0.0649 | 7.74 | 300 | 0.0932 | 7.4915 | 0.9816 | 0.9684 | 15.5666 |
0.0524 | 8.0 | 310 | 0.0905 | 7.1666 | 0.9815 | 0.9711 | 15.4526 |
0.0693 | 8.26 | 320 | 0.0901 | 6.5627 | 0.9827 | 0.9704 | 15.7335 |
0.0528 | 8.52 | 330 | 0.0845 | 6.6690 | 0.9826 | 0.9734 | 15.5950 |
0.0632 | 8.77 | 340 | 0.0822 | 6.2661 | 0.9833 | 0.9723 | 15.8631 |
0.0522 | 9.03 | 350 | 0.0844 | 6.0073 | 0.9836 | 0.9715 | 15.9393 |
0.0568 | 9.29 | 360 | 0.0817 | 5.9460 | 0.9837 | 0.9721 | 15.9523 |
0.057 | 9.55 | 370 | 0.0900 | 7.9726 | 0.9812 | 0.9730 | 15.1229 |
0.052 | 9.81 | 380 | 0.0836 | 6.5444 | 0.9822 | 0.9712 | 15.6388 |
0.0568 | 10.06 | 390 | 0.0810 | 6.0359 | 0.9836 | 0.9714 | 15.9796 |
0.0481 | 10.32 | 400 | 0.0784 | 6.2110 | 0.9835 | 0.9724 | 15.9235 |
0.0513 | 10.58 | 410 | 0.0803 | 6.0990 | 0.9835 | 0.9715 | 15.9502 |
0.0595 | 10.84 | 420 | 0.0798 | 6.0829 | 0.9835 | 0.9720 | 15.9052 |
0.047 | 11.1 | 430 | 0.0779 | 5.8847 | 0.9838 | 0.9725 | 16.0043 |
0.0406 | 11.35 | 440 | 0.0802 | 5.7944 | 0.9838 | 0.9713 | 16.0620 |
0.0493 | 11.61 | 450 | 0.0781 | 6.0947 | 0.9836 | 0.9731 | 15.9033 |
0.064 | 11.87 | 460 | 0.0769 | 6.1257 | 0.9837 | 0.9736 | 15.9080 |
0.0622 | 12.13 | 470 | 0.0765 | 6.2964 | 0.9835 | 0.9739 | 15.8188 |
0.0457 | 12.39 | 480 | 0.0773 | 5.9826 | 0.9838 | 0.9728 | 16.0119 |
0.0447 | 12.65 | 490 | 0.0761 | 5.7977 | 0.9841 | 0.9728 | 16.0900 |
0.0515 | 12.9 | 500 | 0.0750 | 5.8569 | 0.9840 | 0.9729 | 16.0633 |
0.0357 | 13.16 | 510 | 0.0796 | 5.7990 | 0.9837 | 0.9713 | 16.0818 |
0.0503 | 13.42 | 520 | 0.0749 | 5.8323 | 0.9841 | 0.9736 | 16.0510 |
0.0508 | 13.68 | 530 | 0.0746 | 6.0361 | 0.9839 | 0.9735 | 15.9709 |
0.0533 | 13.94 | 540 | 0.0768 | 6.1596 | 0.9836 | 0.9740 | 15.9193 |
0.0503 | 14.19 | 550 | 0.0739 | 5.5900 | 0.9843 | 0.9723 | 16.1883 |
0.0515 | 14.45 | 560 | 0.0740 | 5.4660 | 0.9845 | 0.9727 | 16.2745 |
0.0502 | 14.71 | 570 | 0.0740 | 5.5895 | 0.9844 | 0.9736 | 16.2054 |
0.0401 | 14.97 | 580 | 0.0741 | 5.9694 | 0.9840 | 0.9747 | 15.9603 |
0.0495 | 15.23 | 590 | 0.0745 | 5.9136 | 0.9841 | 0.9740 | 16.0458 |
0.0413 | 15.48 | 600 | 0.0743 | 5.9548 | 0.9840 | 0.9740 | 16.0119 |
Framework versions
- transformers 4.31.0
- torch 2.0.0
- datasets 2.13.1
- tokenizers 0.13.3
- Downloads last month
- 222