Edit model card

ner_bert_model

This model is a fine-tuned version of bert-base-uncased on the shipping_label_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4145
  • Precision: 0.8235
  • Recall: 0.9333
  • F1: 0.8750
  • Accuracy: 0.9096

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 7 1.7796 0.0 0.0 0.0 0.4294
No log 2.0 14 1.4530 0.5 0.2667 0.3478 0.5650
No log 3.0 21 1.1854 0.5510 0.36 0.4355 0.6384
No log 4.0 28 0.9850 0.6667 0.5867 0.6241 0.7345
No log 5.0 35 0.8189 0.6622 0.6533 0.6577 0.7797
No log 6.0 42 0.7194 0.6914 0.7467 0.7179 0.8192
No log 7.0 49 0.6126 0.7262 0.8133 0.7673 0.8588
No log 8.0 56 0.5760 0.75 0.88 0.8098 0.8701
No log 9.0 63 0.4819 0.8 0.9067 0.8500 0.8927
No log 10.0 70 0.4610 0.7907 0.9067 0.8447 0.8983
No log 11.0 77 0.4471 0.8 0.9067 0.8500 0.8927
No log 12.0 84 0.4203 0.7931 0.92 0.8519 0.9040
No log 13.0 91 0.4281 0.8256 0.9467 0.8820 0.9153
No log 14.0 98 0.3913 0.8256 0.9467 0.8820 0.9153
No log 15.0 105 0.3966 0.8235 0.9333 0.8750 0.9096
No log 16.0 112 0.4033 0.8235 0.9333 0.8750 0.9096
No log 17.0 119 0.4149 0.8140 0.9333 0.8696 0.9040
No log 18.0 126 0.4150 0.8140 0.9333 0.8696 0.9040
No log 19.0 133 0.4122 0.8235 0.9333 0.8750 0.9096
No log 20.0 140 0.4145 0.8235 0.9333 0.8750 0.9096

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DipakBundheliya/ner_bert_model

Finetuned
(2064)
this model

Evaluation results