Disty0's picture
Update README.md
58a3756 verified
|
raw
history blame
8.95 kB
metadata
pipeline_tag: text-to-image
license: other
license_name: faipl-1.0-sd
license_link: LICENSE
decoder:
  - Disty0/sotediffusion-wuerstchen3-alpha1-decoder

SoteDiffusion Wuerstchen3

Anime finetune of Würstchen V3.
Currently is in early state in training.
No commercial use thanks to StabilityAI.

Release Notes

Did major cleanup on the dataset in this release.
Changed the training parameters and started from a fresh state.
Switch to FairAI license. (Still no commercial use.)

UI Guide

SD.Next

Switch to the dev branch:

git checkout dev

Go to Models -> Huggingface and type Disty0/sotediffusion-wuerstchen3-alpha1-decoder into the model name and press download.
Load Disty0/sotediffusion-wuerstchen3-alpha1-decoder after the download process is complete.

Parameters:
Sampler: Default

Steps: 30 or 40
Secondary Steps: 10

CFG: 8
Secondary CFG: 1 or 1.2

ComfyUI

Please refer to CivitAI: https://civitai.com/models/353284

Code Example

pip install diffusers
import torch
from diffusers import StableCascadeCombinedPipeline

device = "cuda"
dtype = torch.bfloat16
model = "Disty0/sotediffusion-wuerstchen3-alpha1-decoder"

pipe = StableCascadeCombinedPipeline.from_pretrained(model, torch_dtype=dtype)

# send everything to the gpu:
pipe = pipe.to(device, dtype=dtype)
pipe.prior_pipe = pipe.prior_pipe.to(device, dtype=dtype)

# or enable model offload to save vram:
# pipe.enable_model_cpu_offload()



prompt = "extremely aesthetic, best quality, newest, general, 1girl, solo, looking at viewer, blush, slight smile, cat ears, long hair, dress, bare shoulders, cherry blossoms, flowers, petals, vegetation, wind,"
negative_prompt = "very displeasing, worst quality, oldest, monochrome, sketch, loli, child,"

output = pipe(
    width=1024,
    height=1536,
    prompt=prompt,
    negative_prompt=negative_prompt,
    decoder_guidance_scale=1.2,
    prior_guidance_scale=8.0,
    prior_num_inference_steps=40,
    output_type="pil",
    num_inference_steps=10
).images[0]

## do something with the output image

Training Status:

GPU used for training: 1x AMD RX 7900 XTX 24GB
GPU Hours: 100

dataset name training done remaining
newest 003 228
recent 003 169
mid 003 121
early 003 067
oldest 003 017
pixiv 003 039
visual novel cg 003 025
anime wallpaper 003 010
Total 32 682

Note: chunks starts from 0 and there are 8000 images per chunk

Dataset:

GPU used for captioning: 1x Intel ARC A770 16GB
GPU Hours: 350

Model used for captioning: SmilingWolf/wd-swinv2-tagger-v3
Command:

python /mnt/DataSSD/AI/Apps/kohya_ss/sd-scripts/finetune/tag_images_by_wd14_tagger.py --model_dir "/mnt/DataSSD/AI/models/wd14_tagger_model" --repo_id "SmilingWolf/wd-swinv2-tagger-v3" --recursive --remove_underscore --use_rating_tags --character_tags_first --character_tag_expand --append_tags --onnx --caption_separator ", " --general_threshold 0.35 --character_threshold 0.50 --batch_size 4 --caption_extension ".txt" ./
dataset name total images total chunk
newest 1.848.331 232
recent 1.380.630 173
mid 993.227 125
early 566.152 071
oldest 160.397 021
pixiv 343.614 043
visual novel cg 231.358 029
anime wallpaper 104.790 014
Total 5.628.499 708

Note:

  • Smallest size is 1280x600 | 768.000 pixels
  • Deduped based on image similarity using czkawka-zli

Tags:

aesthetic tags, quality tags, date tags, custom tags, rating tags, character tags, rest of the tags

Date:

tag date
newest 2022 to 2024
recent 2019 to 2021
mid 2015 to 2018
early 2011 to 2014
oldest 2005 to 2010

Aesthetic Tags:

Model used: shadowlilac/aesthetic-shadow-v2

score greater than tag
0.90 extremely aesthetic
0.80 very aesthetic
0.70 aesthetic
0.50 slightly aesthetic
0.40 not displeasing
0.30 not aesthetic
0.20 slightly displeasing
0.10 displeasing
rest of them very displeasing

Quality Tags:

Model used: https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/models/aes-B32-v0.pth

score greater than tag
0.980 best quality
0.900 high quality
0.750 great quality
0.500 medium quality
0.250 normal quality
0.125 bad quality
0.025 low quality
rest of them worst quality

Rating Tags

  • general
  • sensitive
  • nsfw
  • explicit nsfw

Custom Tags:

dataset name custom tag
image boards date,
pixiv art by Display_Name,
visual novel cg Full_VN_Name (short_3_letter_name), visual novel cg,
anime wallpaper date, anime wallpaper,

Training Params:

Software used: Kohya SD-Scripts with Stable Cascade branch
Base model: Disty0/sote-diffusion-cascade-alpha0

Command:

LD_PRELOAD=/usr/lib/libtcmalloc.so.4 accelerate launch  --mixed_precision fp16 --num_cpu_threads_per_process 1 stable_cascade_train_stage_c.py \
--mixed_precision fp16 \
--save_precision fp16 \
--full_fp16 \
--sdpa \
--gradient_checkpointing \
--train_text_encoder \
--resolution "1024,1024" \
--train_batch_size 2 \
--gradient_accumulation_steps 8 \
--learning_rate 1e-5 \
--learning_rate_te1 1e-5 \
--lr_scheduler constant_with_warmup \
--lr_warmup_steps 100 \
--optimizer_type adafactor \
--optimizer_args "scale_parameter=False" "relative_step=False" "warmup_init=False" \
--max_grad_norm 0 \
--token_warmup_min 1 \
--token_warmup_step 0 \
--shuffle_caption \
--caption_separator ", " \
--caption_dropout_rate 0 \
--caption_tag_dropout_rate 0 \
--caption_dropout_every_n_epochs 0 \
--dataset_repeats 1 \
--save_state \
--save_every_n_steps 256 \
--sample_every_n_steps 64 \
--max_token_length 225 \
--max_train_epochs 1 \
--caption_extension ".txt" \
--max_data_loader_n_workers 2 \
--persistent_data_loader_workers \
--enable_bucket \
--min_bucket_reso 256 \
--max_bucket_reso 4096 \
--bucket_reso_steps 64 \
--bucket_no_upscale \
--log_with tensorboard \
--output_name sotediffusion-wr3_3b \
--train_data_dir /mnt/DataSSD/AI/anime_image_dataset/combined/combined-0004/0005 \
--in_json /mnt/DataSSD/AI/anime_image_dataset/combined/combined-0004/0005.json \
--output_dir /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0005 \
--logging_dir /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0005/logs \
--resume /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0004/sotediffusion-wr3_3b-state \
--stage_c_checkpoint_path /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0004/sotediffusion-wr3_3b.safetensors \
--text_model_checkpoint_path /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0004/sotediffusion-wr3_3b_text_model.safetensors \
--effnet_checkpoint_path /mnt/DataSSD/AI/models/wuerstchen3/effnet_encoder.safetensors \
--previewer_checkpoint_path /mnt/DataSSD/AI/models/wuerstchen3/previewer.safetensors \
--sample_prompts /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/config/sotediffusion-prompt.txt

Limitations and Bias

Bias

  • This model is intended for anime illustrations.
    Realistic capabilites are not tested at all.
  • Still underbaked.

Limitations

  • Can fall back to realistic.
    Add "realistic" tag to the negatives when this happens.
  • Far shot eyes are can bad.
  • Anatomy and hands can bad.

License

(This part is copied directly from Animagine V3.1 and modified.)

SoteDiffusion models falls under Fair AI Public License 1.0-SD license, which is compatible with Stable Diffusion models’ license. Key points:

  1. Modification Sharing: If you modify SoteDiffusion models, you must share both your changes and the original license.
  2. Source Code Accessibility: If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.
  3. Distribution Terms: Any distribution must be under this license or another with similar rules.
  4. Compliance: Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.

Notes: Anything not covered by Fair AI license is inherited from Stability AI Non-Commercial license which is named as LICENSE_INHERIT. Meaning, still no commercial use of any kind.