Text Generation
Transformers
English
llama
Generated from Trainer
8-bit precision
bitsandbytes
Doctor-Shotgun commited on
Commit
30fa368
1 Parent(s): 7831acd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -14
README.md CHANGED
@@ -1,30 +1,60 @@
1
  ---
 
2
  tags:
3
  - generated_from_trainer
4
  model-index:
5
  - name: no-robots-lora-out
6
  results: []
 
 
 
 
 
 
7
  ---
8
 
9
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
- should probably proofread and complete it, then remove this comment. -->
11
-
12
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
13
- # no-robots-lora-out
 
 
14
 
15
- This model was trained from scratch on the None dataset.
16
 
17
  ## Model description
18
 
19
- More information needed
20
 
21
- ## Intended uses & limitations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- More information needed
 
 
24
 
25
- ## Training and evaluation data
26
 
27
- More information needed
 
 
28
 
29
  ## Training procedure
30
 
@@ -42,13 +72,22 @@ The following hyperparameters were used during training:
42
  - lr_scheduler_warmup_steps: 10
43
  - num_epochs: 3
44
 
45
- ### Training results
46
-
47
-
48
-
49
  ### Framework versions
50
 
51
  - Transformers 4.34.1
52
  - Pytorch 2.0.1+cu118
53
  - Datasets 2.14.6
54
  - Tokenizers 0.14.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ inference: false
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
  - name: no-robots-lora-out
7
  results: []
8
+ license: cc-by-nc-4.0
9
+ datasets:
10
+ - HuggingFaceH4/no_robots
11
+ - Doctor-Shotgun/no-robots-sharegpt
12
+ language:
13
+ - en
14
  ---
15
 
 
 
 
16
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ # no-robots-y34b-lora
18
+
19
+ This model is a Yi-34B-Llama training on the [HuggingFaceH4/no_robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots). It uses my converted dataset in ShareGPT format with a few minor corrections (https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt).
20
 
21
+ The [Yi-34B-Llama](https://huggingface.co/chargoddard/Yi-34B-Llama) model is a modified [01-ai/Yi-34B](https://huggingface.co/01-ai/Yi-34B) with keys renamed to match those used in Llama models, eliminating the need for remote code and ensuring compatibility with existing training and inference repositories. Architecturally this is similar to a Llama 2 34B model with an expanded vocab size of 64000.
22
 
23
  ## Model description
24
 
25
+ No Robots is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better. No Robots was modelled after the instruction dataset described in OpenAI's [InstructGPT paper](https://huggingface.co/papers/2203.02155), and is comprised mostly of single-turn instructions across the following categories:
26
 
27
+ | Category | Count |
28
+ |:-----------|--------:|
29
+ | Generation | 4560 |
30
+ | Open QA | 1240 |
31
+ | Brainstorm | 1120 |
32
+ | Chat | 850 |
33
+ | Rewrite | 660 |
34
+ | Summarize | 420 |
35
+ | Coding | 350 |
36
+ | Classify | 350 |
37
+ | Closed QA | 260 |
38
+ | Extract | 190 |
39
+
40
+ This lora was trained using a modified multi-turn Alpaca prompt format:
41
+
42
+ ```
43
+ ### Instruction:
44
+ Below is a message that describes a task. Write a response that appropriately completes the request.
45
+
46
+ ### Input:
47
+ {human prompt}
48
 
49
+ ### Response:
50
+ {bot response}
51
+ ```
52
 
53
+ Some chat examples have alternate system prompts that differ from the default provided above.
54
 
55
+ ## Intended uses & limitations
56
+
57
+ The intended use is to add instruction-following capabilities to the base model based on curated human examples. Outputs may exhibit biases observed in the base model, and have not been filtered for explicit or harmful content and hallucinations.
58
 
59
  ## Training procedure
60
 
 
72
  - lr_scheduler_warmup_steps: 10
73
  - num_epochs: 3
74
 
 
 
 
 
75
  ### Framework versions
76
 
77
  - Transformers 4.34.1
78
  - Pytorch 2.0.1+cu118
79
  - Datasets 2.14.6
80
  - Tokenizers 0.14.1
81
+
82
+ ### Citation data
83
+
84
+ ```
85
+ @misc{no_robots,
86
+ author = {Nazneen Rajani and Lewis Tunstall and Edward Beeching and Nathan Lambert and Alexander M. Rush and Thomas Wolf},
87
+ title = {No Robots},
88
+ year = {2023},
89
+ publisher = {Hugging Face},
90
+ journal = {Hugging Face repository},
91
+ howpublished = {\url{https://huggingface.co/datasets/HuggingFaceH4/no_robots}}
92
+ }
93
+ ```