Edit model card

Visualize in Weights & Biases

iter_2

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the pref_data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8061
  • Rewards/chosen: -0.1849
  • Rewards/rejected: -0.4492
  • Rewards/accuracies: 0.9873
  • Rewards/margins: 0.2643
  • Logps/rejected: -4.4920
  • Logps/chosen: -1.8486
  • Logits/rejected: 1.5509
  • Logits/chosen: 1.8515

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for DongfuJiang/vapo_lora_all_data_iter_2

Adapter
(618)
this model