2020-Q1-50p-filtered
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2019-90m on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.4514
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.1e-07
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2400000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.03 | 8000 | 2.8937 |
3.073 | 0.07 | 16000 | 2.7660 |
3.073 | 0.1 | 24000 | 2.7233 |
2.8244 | 0.13 | 32000 | 2.6878 |
2.8244 | 0.16 | 40000 | 2.6520 |
2.7542 | 0.2 | 48000 | 2.6300 |
2.7542 | 0.23 | 56000 | 2.6135 |
2.7083 | 0.26 | 64000 | 2.6068 |
2.7083 | 0.3 | 72000 | 2.5854 |
2.6752 | 0.33 | 80000 | 2.5755 |
2.6752 | 0.36 | 88000 | 2.5721 |
2.6657 | 0.39 | 96000 | 2.5709 |
2.6657 | 0.43 | 104000 | 2.5656 |
2.6534 | 0.46 | 112000 | 2.5558 |
2.6534 | 0.49 | 120000 | 2.5496 |
2.646 | 0.52 | 128000 | 2.5471 |
2.646 | 0.56 | 136000 | 2.5408 |
2.625 | 0.59 | 144000 | 2.5315 |
2.625 | 0.62 | 152000 | 2.5365 |
2.6222 | 0.66 | 160000 | 2.5372 |
2.6222 | 0.69 | 168000 | 2.5342 |
2.6256 | 0.72 | 176000 | 2.5308 |
2.6256 | 0.75 | 184000 | 2.5312 |
2.6074 | 0.79 | 192000 | 2.5228 |
2.6074 | 0.82 | 200000 | 2.5292 |
2.6071 | 0.85 | 208000 | 2.5295 |
2.6071 | 0.89 | 216000 | 2.5235 |
2.5955 | 0.92 | 224000 | 2.5219 |
2.5955 | 0.95 | 232000 | 2.5191 |
2.6036 | 0.98 | 240000 | 2.5171 |
2.6036 | 1.02 | 248000 | 2.5102 |
2.6046 | 1.05 | 256000 | 2.5070 |
2.6046 | 1.08 | 264000 | 2.5109 |
2.5892 | 1.11 | 272000 | 2.5105 |
2.5892 | 1.15 | 280000 | 2.5087 |
2.5929 | 1.18 | 288000 | 2.5094 |
2.5929 | 1.21 | 296000 | 2.5086 |
2.5857 | 1.25 | 304000 | 2.4991 |
2.5857 | 1.28 | 312000 | 2.5089 |
2.5828 | 1.31 | 320000 | 2.5017 |
2.5828 | 1.34 | 328000 | 2.5039 |
2.5812 | 1.38 | 336000 | 2.5065 |
2.5812 | 1.41 | 344000 | 2.5083 |
2.5775 | 1.44 | 352000 | 2.5099 |
2.5775 | 1.48 | 360000 | 2.5079 |
2.5711 | 1.51 | 368000 | 2.4922 |
2.5711 | 1.54 | 376000 | 2.5012 |
2.5797 | 1.57 | 384000 | 2.4999 |
2.5797 | 1.61 | 392000 | 2.4881 |
2.5718 | 1.64 | 400000 | 2.4960 |
2.5718 | 1.67 | 408000 | 2.4908 |
2.5627 | 1.7 | 416000 | 2.4971 |
2.5627 | 1.74 | 424000 | 2.4916 |
2.5641 | 1.77 | 432000 | 2.4971 |
2.5641 | 1.8 | 440000 | 2.4954 |
2.5633 | 1.84 | 448000 | 2.4860 |
2.5633 | 1.87 | 456000 | 2.4894 |
2.5676 | 1.9 | 464000 | 2.4893 |
2.5676 | 1.93 | 472000 | 2.4884 |
2.5687 | 1.97 | 480000 | 2.4921 |
2.5687 | 2.0 | 488000 | 2.4873 |
2.5633 | 2.03 | 496000 | 2.4919 |
2.5633 | 2.07 | 504000 | 2.4821 |
2.5547 | 2.1 | 512000 | 2.4909 |
2.5547 | 2.13 | 520000 | 2.4818 |
2.5617 | 2.16 | 528000 | 2.4855 |
2.5617 | 2.2 | 536000 | 2.4850 |
2.5569 | 2.23 | 544000 | 2.4803 |
2.5569 | 2.26 | 552000 | 2.4776 |
2.5535 | 2.29 | 560000 | 2.4824 |
2.5535 | 2.33 | 568000 | 2.4822 |
2.5534 | 2.36 | 576000 | 2.4763 |
2.5534 | 2.39 | 584000 | 2.4797 |
2.5583 | 2.43 | 592000 | 2.4872 |
2.5583 | 2.46 | 600000 | 2.4812 |
2.5545 | 2.49 | 608000 | 2.4748 |
2.5545 | 2.52 | 616000 | 2.4736 |
2.5561 | 2.56 | 624000 | 2.4714 |
2.5561 | 2.59 | 632000 | 2.4858 |
2.5384 | 2.62 | 640000 | 2.4829 |
2.5384 | 2.66 | 648000 | 2.4766 |
2.541 | 2.69 | 656000 | 2.4836 |
2.541 | 2.72 | 664000 | 2.4651 |
2.5439 | 2.75 | 672000 | 2.4797 |
2.5439 | 2.79 | 680000 | 2.4702 |
2.5597 | 2.82 | 688000 | 2.4751 |
2.5597 | 2.85 | 696000 | 2.4744 |
2.5491 | 2.88 | 704000 | 2.4756 |
2.5491 | 2.92 | 712000 | 2.4731 |
2.5505 | 2.95 | 720000 | 2.4756 |
2.5505 | 2.98 | 728000 | 2.4704 |
2.5432 | 3.02 | 736000 | 2.4763 |
2.5432 | 3.05 | 744000 | 2.4743 |
2.5485 | 3.08 | 752000 | 2.4627 |
2.5485 | 3.11 | 760000 | 2.4714 |
2.5482 | 3.15 | 768000 | 2.4685 |
2.5482 | 3.18 | 776000 | 2.4673 |
2.5411 | 3.21 | 784000 | 2.4726 |
2.5411 | 3.25 | 792000 | 2.4761 |
2.5407 | 3.28 | 800000 | 2.4612 |
2.5407 | 3.31 | 808000 | 2.4743 |
2.5307 | 3.34 | 816000 | 2.4699 |
2.5307 | 3.38 | 824000 | 2.4721 |
2.5391 | 3.41 | 832000 | 2.4614 |
2.5391 | 3.44 | 840000 | 2.4641 |
2.5378 | 3.47 | 848000 | 2.4652 |
2.5378 | 3.51 | 856000 | 2.4641 |
2.5399 | 3.54 | 864000 | 2.4691 |
2.5399 | 3.57 | 872000 | 2.4612 |
2.5412 | 3.61 | 880000 | 2.4696 |
2.5412 | 3.64 | 888000 | 2.4638 |
2.5389 | 3.67 | 896000 | 2.4658 |
2.5389 | 3.7 | 904000 | 2.4725 |
2.5325 | 3.74 | 912000 | 2.4642 |
2.5325 | 3.77 | 920000 | 2.4599 |
2.5351 | 3.8 | 928000 | 2.4617 |
2.5351 | 3.84 | 936000 | 2.4646 |
2.522 | 3.87 | 944000 | 2.4665 |
2.522 | 3.9 | 952000 | 2.4762 |
2.5331 | 3.93 | 960000 | 2.4669 |
2.5331 | 3.97 | 968000 | 2.4550 |
2.5276 | 4.0 | 976000 | 2.4662 |
2.5276 | 4.03 | 984000 | 2.4645 |
2.5206 | 4.06 | 992000 | 2.4587 |
2.5206 | 4.1 | 1000000 | 2.4725 |
2.5294 | 4.13 | 1008000 | 2.4588 |
2.5294 | 4.16 | 1016000 | 2.4591 |
2.5312 | 4.2 | 1024000 | 2.4681 |
2.5312 | 4.23 | 1032000 | 2.4625 |
2.525 | 4.26 | 1040000 | 2.4659 |
2.525 | 4.29 | 1048000 | 2.4609 |
2.5318 | 4.33 | 1056000 | 2.4571 |
2.5318 | 4.36 | 1064000 | 2.4582 |
2.5332 | 4.39 | 1072000 | 2.4566 |
2.5332 | 4.43 | 1080000 | 2.4588 |
2.5168 | 4.46 | 1088000 | 2.4606 |
2.5168 | 4.49 | 1096000 | 2.4598 |
2.5181 | 4.52 | 1104000 | 2.4543 |
2.5181 | 4.56 | 1112000 | 2.4620 |
2.5246 | 4.59 | 1120000 | 2.4639 |
2.5246 | 4.62 | 1128000 | 2.4556 |
2.5318 | 4.65 | 1136000 | 2.4571 |
2.5318 | 4.69 | 1144000 | 2.4636 |
2.512 | 4.72 | 1152000 | 2.4568 |
2.512 | 4.75 | 1160000 | 2.4644 |
2.5174 | 4.79 | 1168000 | 2.4529 |
2.5174 | 4.82 | 1176000 | 2.4614 |
2.5196 | 4.85 | 1184000 | 2.4638 |
2.5196 | 4.88 | 1192000 | 2.4534 |
2.5248 | 4.92 | 1200000 | 2.4553 |
2.5248 | 4.95 | 1208000 | 2.4537 |
2.5201 | 4.98 | 1216000 | 2.4579 |
2.5201 | 5.02 | 1224000 | 2.4525 |
2.5164 | 5.05 | 1232000 | 2.4645 |
2.5164 | 5.08 | 1240000 | 2.4480 |
2.5186 | 5.11 | 1248000 | 2.4606 |
2.5186 | 5.15 | 1256000 | 2.4623 |
2.5123 | 5.18 | 1264000 | 2.4566 |
2.5123 | 5.21 | 1272000 | 2.4644 |
2.5233 | 5.24 | 1280000 | 2.4576 |
2.5233 | 5.28 | 1288000 | 2.4519 |
2.513 | 5.31 | 1296000 | 2.4570 |
2.513 | 5.34 | 1304000 | 2.4627 |
2.5226 | 5.38 | 1312000 | 2.4500 |
2.5226 | 5.41 | 1320000 | 2.4563 |
2.5222 | 5.44 | 1328000 | 2.4521 |
2.5222 | 5.47 | 1336000 | 2.4591 |
2.5191 | 5.51 | 1344000 | 2.4509 |
2.5191 | 5.54 | 1352000 | 2.4559 |
2.5243 | 5.57 | 1360000 | 2.4502 |
2.5243 | 5.61 | 1368000 | 2.4515 |
2.5157 | 5.64 | 1376000 | 2.4563 |
2.5157 | 5.67 | 1384000 | 2.4526 |
2.5162 | 5.7 | 1392000 | 2.4586 |
2.5162 | 5.74 | 1400000 | 2.4584 |
2.5169 | 5.77 | 1408000 | 2.4542 |
2.5169 | 5.8 | 1416000 | 2.4602 |
2.5127 | 5.84 | 1424000 | 2.4587 |
2.5127 | 5.87 | 1432000 | 2.4529 |
2.5144 | 5.9 | 1440000 | 2.4620 |
2.5144 | 5.93 | 1448000 | 2.4509 |
2.5175 | 5.97 | 1456000 | 2.4503 |
2.5175 | 6.0 | 1464000 | 2.4545 |
2.5147 | 6.03 | 1472000 | 2.4440 |
2.5147 | 6.06 | 1480000 | 2.4577 |
2.5128 | 6.1 | 1488000 | 2.4566 |
2.5128 | 6.13 | 1496000 | 2.4499 |
2.5168 | 6.16 | 1504000 | 2.4480 |
2.5168 | 6.2 | 1512000 | 2.4436 |
2.5225 | 6.23 | 1520000 | 2.4467 |
2.5225 | 6.26 | 1528000 | 2.4520 |
2.5135 | 6.29 | 1536000 | 2.4535 |
2.5135 | 6.33 | 1544000 | 2.4463 |
2.5161 | 6.36 | 1552000 | 2.4556 |
2.5161 | 6.39 | 1560000 | 2.4605 |
2.5144 | 6.43 | 1568000 | 2.4516 |
2.5144 | 6.46 | 1576000 | 2.4488 |
2.5209 | 6.49 | 1584000 | 2.4525 |
2.5209 | 6.52 | 1592000 | 2.4502 |
2.5102 | 6.56 | 1600000 | 2.4538 |
2.5102 | 6.59 | 1608000 | 2.4491 |
2.5176 | 6.62 | 1616000 | 2.4528 |
2.5176 | 6.65 | 1624000 | 2.4460 |
2.5208 | 6.69 | 1632000 | 2.4485 |
2.5208 | 6.72 | 1640000 | 2.4513 |
2.5064 | 6.75 | 1648000 | 2.4519 |
2.5064 | 6.79 | 1656000 | 2.4493 |
2.5111 | 6.82 | 1664000 | 2.4505 |
2.5111 | 6.85 | 1672000 | 2.4502 |
2.5141 | 6.88 | 1680000 | 2.4560 |
2.5141 | 6.92 | 1688000 | 2.4500 |
2.5089 | 6.95 | 1696000 | 2.4513 |
2.5089 | 6.98 | 1704000 | 2.4418 |
2.5174 | 7.02 | 1712000 | 2.4477 |
2.5174 | 7.05 | 1720000 | 2.4508 |
2.5198 | 7.08 | 1728000 | 2.4486 |
2.5198 | 7.11 | 1736000 | 2.4577 |
2.4974 | 7.15 | 1744000 | 2.4416 |
2.4974 | 7.18 | 1752000 | 2.4549 |
2.5016 | 7.21 | 1760000 | 2.4557 |
2.5016 | 7.24 | 1768000 | 2.4532 |
2.5112 | 7.28 | 1776000 | 2.4451 |
2.5112 | 7.31 | 1784000 | 2.4607 |
2.5172 | 7.34 | 1792000 | 2.4452 |
2.5172 | 7.38 | 1800000 | 2.4427 |
2.5089 | 7.41 | 1808000 | 2.4511 |
2.5089 | 7.44 | 1816000 | 2.4441 |
2.5136 | 7.47 | 1824000 | 2.4492 |
2.5136 | 7.51 | 1832000 | 2.4524 |
2.509 | 7.54 | 1840000 | 2.4512 |
2.509 | 7.57 | 1848000 | 2.4528 |
2.5157 | 7.61 | 1856000 | 2.4440 |
2.5157 | 7.64 | 1864000 | 2.4402 |
2.5181 | 7.67 | 1872000 | 2.4538 |
2.5181 | 7.7 | 1880000 | 2.4481 |
2.5145 | 7.74 | 1888000 | 2.4417 |
2.5145 | 7.77 | 1896000 | 2.4512 |
2.5013 | 7.8 | 1904000 | 2.4560 |
2.5013 | 7.83 | 1912000 | 2.4509 |
2.5064 | 7.87 | 1920000 | 2.4473 |
2.5064 | 7.9 | 1928000 | 2.4576 |
2.5068 | 7.93 | 1936000 | 2.4461 |
2.5068 | 7.97 | 1944000 | 2.4451 |
2.5152 | 8.0 | 1952000 | 2.4421 |
2.5152 | 8.03 | 1960000 | 2.4458 |
2.5025 | 8.06 | 1968000 | 2.4532 |
2.5025 | 8.1 | 1976000 | 2.4541 |
2.5151 | 8.13 | 1984000 | 2.4499 |
2.5151 | 8.16 | 1992000 | 2.4501 |
2.5138 | 8.2 | 2000000 | 2.4448 |
2.5138 | 8.23 | 2008000 | 2.4562 |
2.5039 | 8.26 | 2016000 | 2.4613 |
2.5039 | 8.29 | 2024000 | 2.4471 |
2.5055 | 8.33 | 2032000 | 2.4450 |
2.5055 | 8.36 | 2040000 | 2.4493 |
2.5085 | 8.39 | 2048000 | 2.4482 |
2.5085 | 8.42 | 2056000 | 2.4572 |
2.5114 | 8.46 | 2064000 | 2.4443 |
2.5114 | 8.49 | 2072000 | 2.4456 |
2.5132 | 8.52 | 2080000 | 2.4528 |
2.5132 | 8.56 | 2088000 | 2.4497 |
2.5072 | 8.59 | 2096000 | 2.4548 |
2.5072 | 8.62 | 2104000 | 2.4548 |
2.504 | 8.65 | 2112000 | 2.4443 |
2.504 | 8.69 | 2120000 | 2.4452 |
2.5128 | 8.72 | 2128000 | 2.4510 |
2.5128 | 8.75 | 2136000 | 2.4480 |
2.5133 | 8.79 | 2144000 | 2.4470 |
2.5133 | 8.82 | 2152000 | 2.4437 |
2.5067 | 8.85 | 2160000 | 2.4447 |
2.5067 | 8.88 | 2168000 | 2.4531 |
2.4996 | 8.92 | 2176000 | 2.4475 |
2.4996 | 8.95 | 2184000 | 2.4438 |
2.5123 | 8.98 | 2192000 | 2.4552 |
2.5123 | 9.01 | 2200000 | 2.4441 |
2.5044 | 9.05 | 2208000 | 2.4438 |
2.5044 | 9.08 | 2216000 | 2.4534 |
2.5068 | 9.11 | 2224000 | 2.4497 |
2.5068 | 9.15 | 2232000 | 2.4440 |
2.5165 | 9.18 | 2240000 | 2.4577 |
2.5165 | 9.21 | 2248000 | 2.4507 |
2.5087 | 9.24 | 2256000 | 2.4494 |
2.5087 | 9.28 | 2264000 | 2.4393 |
2.5036 | 9.31 | 2272000 | 2.4487 |
2.5036 | 9.34 | 2280000 | 2.4423 |
2.5086 | 9.38 | 2288000 | 2.4456 |
2.5086 | 9.41 | 2296000 | 2.4496 |
2.5034 | 9.44 | 2304000 | 2.4499 |
2.5034 | 9.47 | 2312000 | 2.4433 |
2.5099 | 9.51 | 2320000 | 2.4534 |
2.5099 | 9.54 | 2328000 | 2.4495 |
2.5065 | 9.57 | 2336000 | 2.4510 |
2.5065 | 9.6 | 2344000 | 2.4513 |
2.502 | 9.64 | 2352000 | 2.4512 |
2.502 | 9.67 | 2360000 | 2.4469 |
2.5043 | 9.7 | 2368000 | 2.4544 |
2.5043 | 9.74 | 2376000 | 2.4493 |
2.5068 | 9.77 | 2384000 | 2.4537 |
2.5068 | 9.8 | 2392000 | 2.4387 |
2.5118 | 9.83 | 2400000 | 2.4494 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for DouglasPontes/2020-Q1-50p-filtered-random
Base model
cardiffnlp/twitter-roberta-base-2019-90m