metadata
base_model: DouglasPontes/2020-Q1-filtered_tweets
tags:
- generated_from_trainer
model-index:
- name: 2020-Q2-75p-filtered
results: []
2020-Q2-75p-filtered
This model is a fine-tuned version of DouglasPontes/2020-Q1-filtered_tweets on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.2312
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.1e-07
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2400000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.02 | 8000 | 2.4865 |
2.6592 | 0.04 | 16000 | 2.4598 |
2.6592 | 0.07 | 24000 | 2.4472 |
2.6211 | 0.09 | 32000 | 2.4341 |
2.6211 | 0.11 | 40000 | 2.4223 |
2.6048 | 0.13 | 48000 | 2.4217 |
2.6048 | 0.16 | 56000 | 2.4184 |
2.5861 | 0.18 | 64000 | 2.4062 |
2.5861 | 0.2 | 72000 | 2.3919 |
2.5736 | 0.22 | 80000 | 2.3896 |
2.5736 | 0.25 | 88000 | 2.3951 |
2.5559 | 0.27 | 96000 | 2.3903 |
2.5559 | 0.29 | 104000 | 2.3836 |
2.5551 | 0.31 | 112000 | 2.3749 |
2.5551 | 0.34 | 120000 | 2.3794 |
2.5371 | 0.36 | 128000 | 2.3733 |
2.5371 | 0.38 | 136000 | 2.3703 |
2.5417 | 0.4 | 144000 | 2.3662 |
2.5417 | 0.43 | 152000 | 2.3728 |
2.5316 | 0.45 | 160000 | 2.3643 |
2.5316 | 0.47 | 168000 | 2.3568 |
2.5296 | 0.49 | 176000 | 2.3555 |
2.5296 | 0.52 | 184000 | 2.3506 |
2.5215 | 0.54 | 192000 | 2.3482 |
2.5215 | 0.56 | 200000 | 2.3514 |
2.5274 | 0.58 | 208000 | 2.3531 |
2.5274 | 0.61 | 216000 | 2.3463 |
2.5215 | 0.63 | 224000 | 2.3470 |
2.5215 | 0.65 | 232000 | 2.3407 |
2.5096 | 0.67 | 240000 | 2.3400 |
2.5096 | 0.7 | 248000 | 2.3402 |
2.5176 | 0.72 | 256000 | 2.3308 |
2.5176 | 0.74 | 264000 | 2.3342 |
2.5048 | 0.76 | 272000 | 2.3333 |
2.5048 | 0.79 | 280000 | 2.3288 |
2.4979 | 0.81 | 288000 | 2.3298 |
2.4979 | 0.83 | 296000 | 2.3237 |
2.4963 | 0.85 | 304000 | 2.3266 |
2.4963 | 0.88 | 312000 | 2.3197 |
2.4972 | 0.9 | 320000 | 2.3271 |
2.4972 | 0.92 | 328000 | 2.3275 |
2.4969 | 0.94 | 336000 | 2.3210 |
2.4969 | 0.97 | 344000 | 2.3222 |
2.4961 | 0.99 | 352000 | 2.3242 |
2.4961 | 1.01 | 360000 | 2.3155 |
2.49 | 1.03 | 368000 | 2.3175 |
2.49 | 1.06 | 376000 | 2.3076 |
2.4847 | 1.08 | 384000 | 2.3138 |
2.4847 | 1.1 | 392000 | 2.3183 |
2.4767 | 1.12 | 400000 | 2.3118 |
2.4767 | 1.15 | 408000 | 2.3152 |
2.4788 | 1.17 | 416000 | 2.3089 |
2.4788 | 1.19 | 424000 | 2.3051 |
2.4738 | 1.21 | 432000 | 2.3102 |
2.4738 | 1.24 | 440000 | 2.3069 |
2.4635 | 1.26 | 448000 | 2.3004 |
2.4635 | 1.28 | 456000 | 2.3066 |
2.4828 | 1.3 | 464000 | 2.3078 |
2.4828 | 1.32 | 472000 | 2.3072 |
2.4675 | 1.35 | 480000 | 2.3073 |
2.4675 | 1.37 | 488000 | 2.3014 |
2.4676 | 1.39 | 496000 | 2.2987 |
2.4676 | 1.41 | 504000 | 2.2988 |
2.4678 | 1.44 | 512000 | 2.2971 |
2.4678 | 1.46 | 520000 | 2.2969 |
2.4634 | 1.48 | 528000 | 2.2990 |
2.4634 | 1.5 | 536000 | 2.2869 |
2.4657 | 1.53 | 544000 | 2.2936 |
2.4657 | 1.55 | 552000 | 2.2915 |
2.4607 | 1.57 | 560000 | 2.2903 |
2.4607 | 1.59 | 568000 | 2.2934 |
2.4558 | 1.62 | 576000 | 2.2845 |
2.4558 | 1.64 | 584000 | 2.2897 |
2.4662 | 1.66 | 592000 | 2.2928 |
2.4662 | 1.68 | 600000 | 2.2861 |
2.4658 | 1.71 | 608000 | 2.2883 |
2.4658 | 1.73 | 616000 | 2.2878 |
2.4533 | 1.75 | 624000 | 2.2892 |
2.4533 | 1.77 | 632000 | 2.2886 |
2.4575 | 1.8 | 640000 | 2.2894 |
2.4575 | 1.82 | 648000 | 2.2871 |
2.4565 | 1.84 | 656000 | 2.2798 |
2.4565 | 1.86 | 664000 | 2.2877 |
2.4548 | 1.89 | 672000 | 2.2859 |
2.4548 | 1.91 | 680000 | 2.2787 |
2.4507 | 1.93 | 688000 | 2.2780 |
2.4507 | 1.95 | 696000 | 2.2826 |
2.4455 | 1.98 | 704000 | 2.2838 |
2.4455 | 2.0 | 712000 | 2.2764 |
2.4516 | 2.02 | 720000 | 2.2814 |
2.4516 | 2.04 | 728000 | 2.2807 |
2.445 | 2.07 | 736000 | 2.2740 |
2.445 | 2.09 | 744000 | 2.2780 |
2.4466 | 2.11 | 752000 | 2.2775 |
2.4466 | 2.13 | 760000 | 2.2783 |
2.4476 | 2.16 | 768000 | 2.2763 |
2.4476 | 2.18 | 776000 | 2.2737 |
2.4449 | 2.2 | 784000 | 2.2753 |
2.4449 | 2.22 | 792000 | 2.2762 |
2.4424 | 2.25 | 800000 | 2.2767 |
2.4424 | 2.27 | 808000 | 2.2702 |
2.4528 | 2.29 | 816000 | 2.2655 |
2.4528 | 2.31 | 824000 | 2.2727 |
2.4523 | 2.34 | 832000 | 2.2733 |
2.4523 | 2.36 | 840000 | 2.2654 |
2.4395 | 2.38 | 848000 | 2.2674 |
2.4395 | 2.4 | 856000 | 2.2754 |
2.434 | 2.43 | 864000 | 2.2722 |
2.434 | 2.45 | 872000 | 2.2666 |
2.4407 | 2.47 | 880000 | 2.2656 |
2.4407 | 2.49 | 888000 | 2.2654 |
2.4352 | 2.52 | 896000 | 2.2630 |
2.4352 | 2.54 | 904000 | 2.2662 |
2.4393 | 2.56 | 912000 | 2.2692 |
2.4393 | 2.58 | 920000 | 2.2558 |
2.4378 | 2.61 | 928000 | 2.2619 |
2.4378 | 2.63 | 936000 | 2.2614 |
2.4392 | 2.65 | 944000 | 2.2578 |
2.4392 | 2.67 | 952000 | 2.2672 |
2.437 | 2.69 | 960000 | 2.2598 |
2.437 | 2.72 | 968000 | 2.2633 |
2.4388 | 2.74 | 976000 | 2.2566 |
2.4388 | 2.76 | 984000 | 2.2551 |
2.4386 | 2.78 | 992000 | 2.2606 |
2.4386 | 2.81 | 1000000 | 2.2634 |
2.4402 | 2.83 | 1008000 | 2.2641 |
2.4402 | 2.85 | 1016000 | 2.2619 |
2.4442 | 2.87 | 1024000 | 2.2584 |
2.4442 | 2.9 | 1032000 | 2.2579 |
2.4327 | 2.92 | 1040000 | 2.2523 |
2.4327 | 2.94 | 1048000 | 2.2562 |
2.4289 | 2.96 | 1056000 | 2.2593 |
2.4289 | 2.99 | 1064000 | 2.2562 |
2.4319 | 3.01 | 1072000 | 2.2536 |
2.4319 | 3.03 | 1080000 | 2.2603 |
2.4174 | 3.05 | 1088000 | 2.2549 |
2.4174 | 3.08 | 1096000 | 2.2595 |
2.4155 | 3.1 | 1104000 | 2.2555 |
2.4155 | 3.12 | 1112000 | 2.2501 |
2.427 | 3.14 | 1120000 | 2.2528 |
2.427 | 3.17 | 1128000 | 2.2529 |
2.4222 | 3.19 | 1136000 | 2.2536 |
2.4222 | 3.21 | 1144000 | 2.2582 |
2.4232 | 3.23 | 1152000 | 2.2522 |
2.4232 | 3.26 | 1160000 | 2.2525 |
2.4252 | 3.28 | 1168000 | 2.2538 |
2.4252 | 3.3 | 1176000 | 2.2512 |
2.4209 | 3.32 | 1184000 | 2.2557 |
2.4209 | 3.35 | 1192000 | 2.2445 |
2.4243 | 3.37 | 1200000 | 2.2570 |
2.4243 | 3.39 | 1208000 | 2.2539 |
2.4278 | 3.41 | 1216000 | 2.2514 |
2.4278 | 3.44 | 1224000 | 2.2454 |
2.4286 | 3.46 | 1232000 | 2.2463 |
2.4286 | 3.48 | 1240000 | 2.2506 |
2.4274 | 3.5 | 1248000 | 2.2427 |
2.4274 | 3.53 | 1256000 | 2.2535 |
2.4201 | 3.55 | 1264000 | 2.2517 |
2.4201 | 3.57 | 1272000 | 2.2436 |
2.4233 | 3.59 | 1280000 | 2.2430 |
2.4233 | 3.62 | 1288000 | 2.2470 |
2.4183 | 3.64 | 1296000 | 2.2446 |
2.4183 | 3.66 | 1304000 | 2.2539 |
2.428 | 3.68 | 1312000 | 2.2492 |
2.428 | 3.71 | 1320000 | 2.2544 |
2.4206 | 3.73 | 1328000 | 2.2478 |
2.4206 | 3.75 | 1336000 | 2.2420 |
2.4287 | 3.77 | 1344000 | 2.2442 |
2.4287 | 3.8 | 1352000 | 2.2426 |
2.4297 | 3.82 | 1360000 | 2.2426 |
2.4297 | 3.84 | 1368000 | 2.2481 |
2.4185 | 3.86 | 1376000 | 2.2449 |
2.4185 | 3.89 | 1384000 | 2.2468 |
2.4217 | 3.91 | 1392000 | 2.2467 |
2.4217 | 3.93 | 1400000 | 2.2463 |
2.4144 | 3.95 | 1408000 | 2.2482 |
2.4144 | 3.97 | 1416000 | 2.2424 |
2.4175 | 4.0 | 1424000 | 2.2415 |
2.4175 | 4.02 | 1432000 | 2.2451 |
2.4169 | 4.04 | 1440000 | 2.2443 |
2.4169 | 4.06 | 1448000 | 2.2389 |
2.4142 | 4.09 | 1456000 | 2.2377 |
2.4142 | 4.11 | 1464000 | 2.2399 |
2.4122 | 4.13 | 1472000 | 2.2447 |
2.4122 | 4.15 | 1480000 | 2.2456 |
2.4166 | 4.18 | 1488000 | 2.2451 |
2.4166 | 4.2 | 1496000 | 2.2369 |
2.4165 | 4.22 | 1504000 | 2.2426 |
2.4165 | 4.24 | 1512000 | 2.2384 |
2.4204 | 4.27 | 1520000 | 2.2454 |
2.4204 | 4.29 | 1528000 | 2.2422 |
2.4192 | 4.31 | 1536000 | 2.2423 |
2.4192 | 4.33 | 1544000 | 2.2435 |
2.4167 | 4.36 | 1552000 | 2.2451 |
2.4167 | 4.38 | 1560000 | 2.2443 |
2.4124 | 4.4 | 1568000 | 2.2430 |
2.4124 | 4.42 | 1576000 | 2.2422 |
2.406 | 4.45 | 1584000 | 2.2357 |
2.406 | 4.47 | 1592000 | 2.2395 |
2.4166 | 4.49 | 1600000 | 2.2378 |
2.4166 | 4.51 | 1608000 | 2.2420 |
2.4144 | 4.54 | 1616000 | 2.2402 |
2.4144 | 4.56 | 1624000 | 2.2384 |
2.4219 | 4.58 | 1632000 | 2.2438 |
2.4219 | 4.6 | 1640000 | 2.2455 |
2.4061 | 4.63 | 1648000 | 2.2397 |
2.4061 | 4.65 | 1656000 | 2.2354 |
2.411 | 4.67 | 1664000 | 2.2393 |
2.411 | 4.69 | 1672000 | 2.2388 |
2.4125 | 4.72 | 1680000 | 2.2406 |
2.4125 | 4.74 | 1688000 | 2.2330 |
2.4092 | 4.76 | 1696000 | 2.2336 |
2.4092 | 4.78 | 1704000 | 2.2398 |
2.4078 | 4.81 | 1712000 | 2.2368 |
2.4078 | 4.83 | 1720000 | 2.2361 |
2.4185 | 4.85 | 1728000 | 2.2378 |
2.4185 | 4.87 | 1736000 | 2.2339 |
2.4088 | 4.9 | 1744000 | 2.2366 |
2.4088 | 4.92 | 1752000 | 2.2385 |
2.4095 | 4.94 | 1760000 | 2.2337 |
2.4095 | 4.96 | 1768000 | 2.2413 |
2.4078 | 4.99 | 1776000 | 2.2377 |
2.4078 | 5.01 | 1784000 | 2.2302 |
2.4073 | 5.03 | 1792000 | 2.2357 |
2.4073 | 5.05 | 1800000 | 2.2384 |
2.4073 | 5.08 | 1808000 | 2.2322 |
2.4073 | 5.1 | 1816000 | 2.2344 |
2.4043 | 5.12 | 1824000 | 2.2327 |
2.4043 | 5.14 | 1832000 | 2.2350 |
2.4082 | 5.17 | 1840000 | 2.2376 |
2.4082 | 5.19 | 1848000 | 2.2363 |
2.4073 | 5.21 | 1856000 | 2.2323 |
2.4073 | 5.23 | 1864000 | 2.2419 |
2.4148 | 5.26 | 1872000 | 2.2293 |
2.4148 | 5.28 | 1880000 | 2.2346 |
2.4098 | 5.3 | 1888000 | 2.2372 |
2.4098 | 5.32 | 1896000 | 2.2371 |
2.407 | 5.34 | 1904000 | 2.2397 |
2.407 | 5.37 | 1912000 | 2.2300 |
2.4108 | 5.39 | 1920000 | 2.2317 |
2.4108 | 5.41 | 1928000 | 2.2350 |
2.4168 | 5.43 | 1936000 | 2.2343 |
2.4168 | 5.46 | 1944000 | 2.2327 |
2.4113 | 5.48 | 1952000 | 2.2363 |
2.4113 | 5.5 | 1960000 | 2.2314 |
2.4131 | 5.52 | 1968000 | 2.2303 |
2.4131 | 5.55 | 1976000 | 2.2353 |
2.4129 | 5.57 | 1984000 | 2.2353 |
2.4129 | 5.59 | 1992000 | 2.2296 |
2.4129 | 5.61 | 2000000 | 2.2314 |
2.4129 | 5.64 | 2008000 | 2.2288 |
2.4045 | 5.66 | 2016000 | 2.2347 |
2.4045 | 5.68 | 2024000 | 2.2349 |
2.4089 | 5.7 | 2032000 | 2.2310 |
2.4089 | 5.73 | 2040000 | 2.2342 |
2.4091 | 5.75 | 2048000 | 2.2320 |
2.4091 | 5.77 | 2056000 | 2.2311 |
2.4137 | 5.79 | 2064000 | 2.2278 |
2.4137 | 5.82 | 2072000 | 2.2344 |
2.4063 | 5.84 | 2080000 | 2.2339 |
2.4063 | 5.86 | 2088000 | 2.2271 |
2.4046 | 5.88 | 2096000 | 2.2263 |
2.4046 | 5.91 | 2104000 | 2.2369 |
2.4105 | 5.93 | 2112000 | 2.2330 |
2.4105 | 5.95 | 2120000 | 2.2361 |
2.4045 | 5.97 | 2128000 | 2.2320 |
2.4045 | 6.0 | 2136000 | 2.2283 |
2.4093 | 6.02 | 2144000 | 2.2262 |
2.4093 | 6.04 | 2152000 | 2.2294 |
2.4109 | 6.06 | 2160000 | 2.2334 |
2.4109 | 6.09 | 2168000 | 2.2363 |
2.4061 | 6.11 | 2176000 | 2.2309 |
2.4061 | 6.13 | 2184000 | 2.2269 |
2.4007 | 6.15 | 2192000 | 2.2369 |
2.4007 | 6.18 | 2200000 | 2.2297 |
2.4034 | 6.2 | 2208000 | 2.2267 |
2.4034 | 6.22 | 2216000 | 2.2310 |
2.4049 | 6.24 | 2224000 | 2.2362 |
2.4049 | 6.27 | 2232000 | 2.2319 |
2.4052 | 6.29 | 2240000 | 2.2308 |
2.4052 | 6.31 | 2248000 | 2.2225 |
2.4102 | 6.33 | 2256000 | 2.2366 |
2.4102 | 6.36 | 2264000 | 2.2327 |
2.4046 | 6.38 | 2272000 | 2.2305 |
2.4046 | 6.4 | 2280000 | 2.2309 |
2.4066 | 6.42 | 2288000 | 2.2291 |
2.4066 | 6.45 | 2296000 | 2.2301 |
2.4041 | 6.47 | 2304000 | 2.2378 |
2.4041 | 6.49 | 2312000 | 2.2317 |
2.4081 | 6.51 | 2320000 | 2.2326 |
2.4081 | 6.54 | 2328000 | 2.2412 |
2.4147 | 6.56 | 2336000 | 2.2349 |
2.4147 | 6.58 | 2344000 | 2.2296 |
2.4105 | 6.6 | 2352000 | 2.2313 |
2.4105 | 6.62 | 2360000 | 2.2297 |
2.4096 | 6.65 | 2368000 | 2.2241 |
2.4096 | 6.67 | 2376000 | 2.2322 |
2.4089 | 6.69 | 2384000 | 2.2344 |
2.4089 | 6.71 | 2392000 | 2.2291 |
2.4048 | 6.74 | 2400000 | 2.2274 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0