|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
- fr |
|
- de |
|
- es |
|
- it |
|
- pt |
|
- ja |
|
- ko |
|
- zh |
|
- ar |
|
license: cc-by-nc-4.0 |
|
tags: |
|
- exl2 |
|
--- |
|
|
|
# c4ai-command-r-plus - EXL2 7.5bpw |
|
|
|
This is a 7.5bpw EXL2 quant of [CohereForAI/c4ai-command-r-plus](https://huggingface.co/CohereForAI/c4ai-command-r-plus) |
|
|
|
Details about the model can be found at the above model page. |
|
|
|
## Turbodep EXL2 Quants |
|
|
|
This repo only has specific quants not already done at [turboderp/command-r-plus-103B-exl2](https://huggingface.co/turboderp/command-r-plus-103B-exl2) |
|
|
|
Quants marked as turboderp can be downloaded from that repo. |
|
|
|
## EXL2 Version |
|
|
|
These quants were made with exllamav2 version 0.0.18. Quants made on this version of EXL2 may not work on older versions of the exllamav2 library. |
|
|
|
If you have problems loading these models, please update Text Generation WebUI to the latest version. |
|
|
|
## Perplexity Scoring |
|
|
|
Below are the perplexity scores for the EXL2 models. A lower score is better. |
|
|
|
| Quant Level | Perplexity Score | Repo | |
|
|-------------|------------------|------| |
|
| 6.0 | 4.7068 | [turboderp](https://huggingface.co/turboderp/command-r-plus-103B-exl2) | |
|
| 5.5 | 4.7136 | Dracones | |
|
| 5.0 | 4.7309 | [turboderp](https://huggingface.co/turboderp/command-r-plus-103B-exl2) | |
|
| 4.5 | 4.8111 | [turboderp](https://huggingface.co/turboderp/command-r-plus-103B-exl2) | |
|
| 4.25 | 4.8292 | [turboderp](https://huggingface.co/turboderp/command-r-plus-103B-exl2) | |
|
| 4.0 | 4.8603 | [turboderp](https://huggingface.co/turboderp/command-r-plus-103B-exl2) | |
|
| 3.75 | 4.9112 | [turboderp](https://huggingface.co/turboderp/command-r-plus-103B-exl2) | |
|
| 3.5 | 4.9592 | [turboderp](https://huggingface.co/turboderp/command-r-plus-103B-exl2) | |
|
| 3.25 | 5.0631 | [turboderp](https://huggingface.co/turboderp/command-r-plus-103B-exl2) | |
|
| 3.0 | 5.2050 | [turboderp](https://huggingface.co/turboderp/command-r-plus-103B-exl2) | |
|
| 2.75 | 5.3820 | Dracones | |
|
| 2.5 | 5.6681 | [turboderp](https://huggingface.co/turboderp/command-r-plus-103B-exl2) | |
|
| 2.25 | 5.9769 | Dracones | |
|
|
|
|
|
## EQ Bench |
|
|
|
Here are the EQ Bench scores for the EXL2 quants using Alpaca, ChatML, Command-R and Command-R-Plus prompt templates. A higher score is better. |
|
|
|
| Quant Size | Alpaca | ChatML | Command-R | Command-R-Plus | |
|
|------------|--------|--------|--------|--------| |
|
| 6.0 | 70.77 | 62.58 | 75.81 | 74.95 | |
|
| 5.5 | 71.93 | 67.7 | 74.9 | 75.48 | |
|
| 5.0 | 69.51 | 63.94 | 74.92 | 75.28 | |
|
|
|
|
|
_Note:_ EQ Bench scripting not working well, other quants may not be tested. |
|
|
|
### Command-R-Plus Template |
|
|
|
This is the Command-R-Plus template yaml that was used in EQ bench(which uses Text Generation Web UI yaml templates). It adds BOS_TOKEN into the starter prompt. |
|
|
|
_text-generation-webui/instruction-templates/Command-R-Plus.yaml_: |
|
```yaml |
|
instruction_template: |- |
|
{%- if messages[0]['role'] == 'system' -%} |
|
{%- set loop_messages = messages[1:] -%} |
|
{%- set system_message = messages[0]['content'] -%} |
|
{%- elif false == true -%} |
|
{%- set loop_messages = messages -%} |
|
{%- set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' -%} |
|
{%- else -%} |
|
{%- set loop_messages = messages -%} |
|
{%- set system_message = false -%} |
|
{%- endif -%} |
|
{%- if system_message != false -%} |
|
{{ '<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }} |
|
{%- endif -%} |
|
{%- for message in loop_messages -%} |
|
{%- set content = message['content'] -%} |
|
{%- if message['role'] == 'user' -%} |
|
{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }} |
|
{%- elif message['role'] == 'assistant' -%} |
|
{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }} |
|
{%- endif -%} |
|
{%- endfor -%} |
|
{%- if add_generation_prompt -%} |
|
{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }} |
|
{%- endif -%} |
|
|
|
``` |
|
|
|
### Perplexity Script |
|
|
|
This was the script used for perplexity testing. |
|
|
|
```bash |
|
#!/bin/bash |
|
|
|
# Activate the conda environment |
|
source ~/miniconda3/etc/profile.d/conda.sh |
|
conda activate exllamav2 |
|
|
|
# Set the model name and bit size |
|
MODEL_NAME="c4ai-command-r-plus" |
|
BIT_PRECISIONS=(8.0 7.5 7.0 6.5 5.5 2.75 2.25) |
|
|
|
# MODEL_NAME="turboderp_command-r-plus-103B" |
|
# BIT_PRECISIONS=(6.0 5.0 4.5 4.25 4.0 3.75 3.5 3.25 3.0 2.5) |
|
|
|
# Print the markdown table header |
|
echo "| Quant Level | Perplexity Score |" |
|
echo "|-------------|------------------|" |
|
|
|
for BIT_PRECISION in "${BIT_PRECISIONS[@]}" |
|
do |
|
MODEL_DIR="models/${MODEL_NAME}_exl2_${BIT_PRECISION}bpw" |
|
# MODEL_DIR="models/${MODEL_NAME}-exl2_${BIT_PRECISION}bpw" |
|
if [ -d "$MODEL_DIR" ]; then |
|
output=$(python test_inference.py -m "$MODEL_DIR" -gs 22,24 -ed data/wikitext/wikitext-2-v1.parquet) |
|
score=$(echo "$output" | grep -oP 'Evaluation perplexity: \K[\d.]+') |
|
echo "| $BIT_PRECISION | $score |" |
|
fi |
|
done |
|
``` |
|
|
|
|
|
## Quant Details |
|
|
|
This is the script used for quantization. |
|
|
|
```bash |
|
#!/bin/bash |
|
|
|
# Activate the conda environment |
|
source ~/miniconda3/etc/profile.d/conda.sh |
|
conda activate exllamav2 |
|
|
|
# Set the model name and bit size |
|
MODEL_NAME="c4ai-command-r-plus" |
|
|
|
# Define variables |
|
MODEL_DIR="models/$MODEL_NAME" |
|
OUTPUT_DIR="exl2_$MODEL_NAME" |
|
MEASUREMENT_FILE="measurements/$MODEL_NAME.json" |
|
|
|
# Create the measurement file if needed |
|
if [ ! -f "$MEASUREMENT_FILE" ]; then |
|
echo "Creating $MEASUREMENT_FILE" |
|
# Create directories |
|
if [ -d "$OUTPUT_DIR" ]; then |
|
rm -r "$OUTPUT_DIR" |
|
fi |
|
mkdir "$OUTPUT_DIR" |
|
|
|
python convert.py -i $MODEL_DIR -o $OUTPUT_DIR -nr -om $MEASUREMENT_FILE |
|
fi |
|
|
|
# Choose one of the below. Either create a single quant for testing or a batch of them. |
|
# BIT_PRECISIONS=(5.0) |
|
BIT_PRECISIONS=(8.0 7.5 6.5 5.5 2.75 2.25) |
|
|
|
for BIT_PRECISION in "${BIT_PRECISIONS[@]}" |
|
do |
|
CONVERTED_FOLDER="models/${MODEL_NAME}_exl2_${BIT_PRECISION}bpw" |
|
|
|
# If it doesn't already exist, make the quant |
|
if [ ! -d "$CONVERTED_FOLDER" ]; then |
|
|
|
echo "Creating $CONVERTED_FOLDER" |
|
|
|
# Create directories |
|
if [ -d "$OUTPUT_DIR" ]; then |
|
rm -r "$OUTPUT_DIR" |
|
fi |
|
mkdir "$OUTPUT_DIR" |
|
mkdir "$CONVERTED_FOLDER" |
|
|
|
# Run conversion commands |
|
python convert.py -i $MODEL_DIR -o $OUTPUT_DIR -nr -m $MEASUREMENT_FILE -b $BIT_PRECISION -cf $CONVERTED_FOLDER |
|
|
|
fi |
|
done |
|
``` |
|
|