Dracones's picture
Upload folder using huggingface_hub
58faaf1 verified
|
raw
history blame
7.52 kB
metadata
library_name: transformers
language:
  - en
  - fr
  - de
  - es
  - it
  - pt
  - ja
  - ko
  - zh
  - ar
license: cc-by-nc-4.0
tags:
  - exl2

c4ai-command-r-v01 - EXL2 3.5bpw

This is a 3.5bpw EXL2 quant of CohereForAI/c4ai-command-r-v01

Details about the model can be found at the above model page.

EXL2 Version

These quants were made with exllamav2 version 0.0.18. Quants made on this version of EXL2 may not working on older versions of the exllamav2 library.

If you have problems loading these models, please update Text Generation WebUI to the latest version.

RP Calibrated

The rpcal quants were made using data/PIPPA-cleaned/pippa_raw_fix.parquet for calibration.

Perplexity Scoring

Below are the perplexity scores for the EXL2 models. A lower score is better.

Stock Quants

Quant Level Perplexity Score
8.0 6.4436
7.0 6.4372
6.0 6.4391
5.0 6.4526
4.5 6.4629
4.0 6.5081
3.5 6.6301
3.0 6.7974

RP Calibrated Quants

Quant Level Perplexity Score
8.0 6.4331
7.0 6.4347
6.0 6.4356
5.0 6.4740
4.5 6.4875
4.0 6.5039
3.5 6.6928
3.0 6.8913

EQ Bench

Here are the EQ Bench scores for the EXL2 quants using Alpaca, ChatML, Command-R and Command-R-Plus prompt templates. A higher score is better.

Quants

Quant Size Instruct Template Score
Run ID Prompt Format Benchmark Score
8.0 Alpaca 56.67
8.0 ChatML 47.28
8.0 Command-R 58.46
8.0 Command-R-Plus 58.49
7.0 Alpaca 57.5
7.0 ChatML 46.86
7.0 Command-R 57.29
7.0 Command-R-Plus 57.91
6.0 Alpaca 56.5
6.0 ChatML 48.61
6.0 Command-R 57.8
6.0 Command-R-Plus 58.64
5.0 Alpaca 54.64
5.0 ChatML 48.48
5.0 Command-R 57.14
5.0 Command-R-Plus 56.63
4.5 Alpaca 57.75
4.5 ChatML 48.1
4.5 Command-R 57.08
4.5 Command-R-Plus 56.7
4.0 Alpaca 53.41
4.0 ChatML 50.99
4.0 Command-R 57.46
4.0 Command-R-Plus 57.99
3.5 Alpaca 56.68
3.5 ChatML 52.72
3.5 Command-R 60.91
3.5 Command-R-Plus 60.91
3.0 Alpaca 36.45
3.0 ChatML 39.19
3.0 Command-R 49.17
3.0 Command-R-Plus 49.68

RP Calibrated Quants

Quant Size Instruct Template Score
8.0 Alpaca 56.23
8.0 ChatML 48.42
8.0 Command-R 58.41
8.0 Command-R-Plus 58.41
7.0 Alpaca 57.01
7.0 ChatML 48.47
7.0 Command-R 57.85
7.0 Command-R-Plus 57.67
6.0 Alpaca 58.33
6.0 ChatML 50.93
6.0 Command-R 60.32
6.0 Command-R-Plus 59.83
5.0 Alpaca 55.28
5.0 ChatML 50.29
5.0 Command-R 58.96
5.0 Command-R-Plus 59.23
4.5 Alpaca 55.01
4.5 ChatML 46.63
4.5 Command-R 57.7
4.5 Command-R-Plus 59.24
4.0 Alpaca 49.76
4.0 ChatML 47.13
4.0 Command-R 54.76
4.0 Command-R-Plus 55.5
3.5 Alpaca 56.39
3.5 ChatML 52.98
3.5 Command-R 59.19
3.5 Command-R-Plus 58.32
3.0 Alpaca 50.36
3.0 ChatML 47.94
3.0 Command-R 54.89
3.0 Command-R-Plus 53.61

Command-R-Plus Template

This is the Command-R-Plus template yaml that was used in EQ bench. It adds BOS_TOKEN into the starter prompt.

instruction_template: |-
  {%- if messages[0]['role'] == 'system' -%}
      {%- set loop_messages = messages[1:] -%}
      {%- set system_message = messages[0]['content'] -%}
  {%- elif false == true -%}
      {%- set loop_messages = messages -%}
      {%- set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' -%}
  {%- else -%}
      {%- set loop_messages = messages -%}
      {%- set system_message = false -%}
  {%- endif -%}
  {%- if system_message != false -%}
      {{ '<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}
  {%- endif -%}
  {%- for message in loop_messages -%}
      {%- set content = message['content'] -%}
      {%- if message['role'] == 'user' -%}
          {{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}
      {%- elif message['role'] == 'assistant' -%}
          {{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>'  + content.strip() + '<|END_OF_TURN_TOKEN|>' }}
      {%- endif -%}
  {%- endfor -%}
  {%- if add_generation_prompt -%}
      {{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}
  {%- endif -%}

Perplexity Script

This was the script used for perplexity testing.

#!/bin/bash

# Activate the conda environment
source ~/miniconda3/etc/profile.d/conda.sh
conda activate exllamav2

# Set the model name and bit size
MODEL_NAME="c4ai-command-r-v01"
BIT_PRECISIONS=(8.0 7.0 6.0 5.0 4.5 4.0 3.5 3.0)

# Print the markdown table header
echo "| Quant Level | Perplexity Score |"
echo "|-------------|------------------|"

for BIT_PRECISION in "${BIT_PRECISIONS[@]}"
do
  MODEL_DIR="models/${MODEL_NAME}_exl2_${BIT_PRECISION}bpw"
  # MODEL_DIR="models/${MODEL_NAME}_exl2_${BIT_PRECISION}bpw-rpcal"
  if [ -d "$MODEL_DIR" ]; then
    output=$(python test_inference.py -m "$MODEL_DIR" -gs 22,24 -ed data/wikitext/wikitext-2-v1.parquet)
    score=$(echo "$output" | grep -oP 'Evaluation perplexity: \K[\d.]+')
    echo "| $BIT_PRECISION | $score |"
  fi
done

Quant Details

This is the script used for quantization.

#!/bin/bash

# Activate the conda environment
source ~/miniconda3/etc/profile.d/conda.sh
conda activate exllamav2

# Set the model name and bit size
MODEL_NAME="c4ai-command-r-v01"

# Define variables
MODEL_DIR="models/$MODEL_NAME"
OUTPUT_DIR="exl2_$MODEL_NAME"
MEASUREMENT_FILE="measurements/$MODEL_NAME.json"
# CALIBRATION_DATASET="data/PIPPA-cleaned/pippa_raw_fix.parquet"

# Create the measurement file if needed
if [ ! -f "$MEASUREMENT_FILE" ]; then
    echo "Creating $MEASUREMENT_FILE"
    # Create directories
    if [ -d "$OUTPUT_DIR" ]; then
        rm -r "$OUTPUT_DIR"
    fi
    mkdir "$OUTPUT_DIR"

    # python convert.py -i $MODEL_DIR -o $OUTPUT_DIR -nr -om $MEASUREMENT_FILE -c $CALIBRATION_DATASET
    python convert.py -i $MODEL_DIR -o $OUTPUT_DIR -nr -om $MEASUREMENT_FILE
fi

# Choose one of the below. Either create a single quant for testing or a batch of them.
# BIT_PRECISIONS=(5.0)
BIT_PRECISIONS=(8.0 7.0 6.0 5.0 4.5 4.0 3.5 3.0)

for BIT_PRECISION in "${BIT_PRECISIONS[@]}"
do
    CONVERTED_FOLDER="models/${MODEL_NAME}_exl2_${BIT_PRECISION}bpw"

    # If it doesn't already exist, make the quant
    if [ ! -d "$CONVERTED_FOLDER" ]; then

        echo "Creating $CONVERTED_FOLDER"

        # Create directories
        if [ -d "$OUTPUT_DIR" ]; then
            rm -r "$OUTPUT_DIR"
        fi
        mkdir "$OUTPUT_DIR"
        mkdir "$CONVERTED_FOLDER"
        
        # Run conversion commands  
        # python convert.py -i $MODEL_DIR -o $OUTPUT_DIR -nr -m $MEASUREMENT_FILE -b $BIT_PRECISION -c $CALIBRATION_DATASET -cf $CONVERTED_FOLDER
        python convert.py -i $MODEL_DIR -o $OUTPUT_DIR -nr -m $MEASUREMENT_FILE -b $BIT_PRECISION -cf $CONVERTED_FOLDER

    fi
done