distilbert-base-multilingual-cased-language-detection-fp16-false-bs-64
This model is a fine-tuned version of distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0103
- Accuracy: 0.9992
- Weighted f1: 0.9992
- Micro f1: 0.9992
- Macro f1: 0.9992
- Weighted recall: 0.9992
- Micro recall: 0.9992
- Macro recall: 0.9992
- Weighted precision: 0.9992
- Micro precision: 0.9992
- Macro precision: 0.9992
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1689 | 1.0 | 165 | 0.0103 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 |
0.0096 | 2.0 | 330 | 0.0115 | 0.9977 | 0.9977 | 0.9977 | 0.9977 | 0.9977 | 0.9977 | 0.9977 | 0.9977 | 0.9977 | 0.9977 |
0.0027 | 3.0 | 495 | 0.0032 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 |
0.0011 | 4.0 | 660 | 0.0022 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 |
0.0007 | 5.0 | 825 | 0.0027 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 |
Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4.dev0
- Tokenizers 0.13.3
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.