Edit model card

doplhin-mistral-dpo-ultrafeedback-binarized-preferences-hinge

This model is a fine-tuned version of cognitivecomputations/dolphin-2.1-mistral-7b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5904
  • Rewards/chosen: -3.5980
  • Rewards/rejected: -6.3560
  • Rewards/accuracies: 0.7954
  • Rewards/margins: 2.7581
  • Logps/rejected: -378.3953
  • Logps/chosen: -389.8724
  • Logits/rejected: -2.4206
  • Logits/chosen: -2.4999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.9205 0.25 700 0.7331 -4.0569 -6.3048 0.7489 2.2478 -377.8824 -394.4619 -2.5742 -2.6507
0.6493 0.51 1400 0.6532 -4.0240 -7.1929 0.7889 3.1689 -386.7637 -394.1322 -2.4562 -2.5463
0.663 0.76 2100 0.5904 -3.5980 -6.3560 0.7954 2.7581 -378.3953 -389.8724 -2.4206 -2.4999

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for DrishtiSharma/doplhin-mistral-dpo-ultrafeedback-binarized-preferences-hinge

Adapter
(11)
this model