Edit model card

llama-pro-8b-tweet-summarization-gradnorm-0.3

This model is a fine-tuned version of TencentARC/LLaMA-Pro-8B on the dialogstudio dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9796
  • Rouge Scores: {'rouge1': 93.71888929189157, 'rouge2': 77.8377567936117, 'rougeL': 64.47906852741538, 'rougeLsum': 93.71298018429633}
  • Bleu Scores: [0.9470990193868204, 0.9341779145832757, 0.9064440397746264, 0.8744914403659334]
  • Gen Len: 463.0182

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 7
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge Scores Bleu Scores Gen Len
1.9065 1.0 220 1.8530 {'rouge1': 92.83694737064799, 'rouge2': 78.72458121869542, 'rougeL': 67.88788283384865, 'rougeLsum': 92.83768512059282} [0.8739198483584956, 0.8530170264142946, 0.8271978418182495, 0.7998377773703629] 463.0182
1.6363 2.0 440 1.8633 {'rouge1': 93.54135671371444, 'rouge2': 78.96116387599493, 'rougeL': 67.77857901494997, 'rougeLsum': 93.54432289584433} [0.8758125801988195, 0.8577741180618648, 0.8322886881519586, 0.80457236049974] 463.0182
1.2817 3.0 660 2.0098 {'rouge1': 87.30764070509844, 'rouge2': 73.12328274037898, 'rougeL': 62.00625532521349, 'rougeLsum': 87.29149649901954} [0.8757949025917542, 0.8593181834244542, 0.8334473061685955, 0.8048319452251607] 463.0182
0.9049 4.0 880 2.2481 {'rouge1': 87.35996946418575, 'rouge2': 72.87802745947901, 'rougeL': 61.35206821444361, 'rougeLsum': 87.32662841081371} [0.8755472589597261, 0.859572654041077, 0.8333237300074641, 0.804082483213136] 463.0182
0.5916 5.0 1100 2.5061 {'rouge1': 78.38431994557745, 'rouge2': 64.89809559762811, 'rougeL': 53.805209482421525, 'rougeLsum': 78.30608179426231} [0.747179346815877, 0.7352208249958618, 0.7126103103040894, 0.6869428956670465] 463.0182
0.3898 6.0 1320 2.8150 {'rouge1': 93.77539618029996, 'rouge2': 78.03050568501187, 'rougeL': 64.82344374456906, 'rougeLsum': 93.76894400818286} [0.9469183628254614, 0.9342162110956728, 0.9067374010427977, 0.8750430150656403] 463.0182
0.2961 7.0 1540 2.9796 {'rouge1': 93.71888929189157, 'rouge2': 77.8377567936117, 'rougeL': 64.47906852741538, 'rougeLsum': 93.71298018429633} [0.9470990193868204, 0.9341779145832757, 0.9064440397746264, 0.8744914403659334] 463.0182

Framework versions

  • PEFT 0.8.2.dev0
  • Transformers 4.38.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for DrishtiSharma/llama-pro-8b-tweet-summarization-gradnorm-0.3

Adapter
(4)
this model