librarian-bot's picture
Librarian Bot: Add base_model information to model
6a5f8a3
|
raw
history blame
2.03 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
  - Multiple Choice
metrics:
  - accuracy
pipeline_tag: question-answering
base_model: bert-base-uncased
model-index:
  - name: bert-base-uncased-Figurative_Language
    results: []

bert-base-uncased-Figurative_Language

This model is a fine-tuned version of bert-base-uncased.

It achieves the following results on the evaluation set:

  • Loss: 0.7629
  • Accuracy: 0.8124

Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Multiple%20Choice/Figurative%20Language/Figurative%20Language%20-%20Multiple%20Choice%20Using%20BERT.ipynb

Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training and evaluation data

Dataset Source: https://huggingface.co/datasets/nightingal3/fig-qa

Histogram of Input Lengths

Histogram of Input Lengths

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6961 1.0 539 0.6932 0.5190
0.6595 2.0 1078 0.5326 0.7214
0.4647 3.0 1617 0.4604 0.7948
0.2884 4.0 2156 0.6204 0.8217
0.1702 5.0 2695 0.7629 0.8124

Framework versions

  • Transformers 4.29.1
  • Pytorch 2.0.1
  • Datasets 2.13.1
  • Tokenizers 0.13.3