DunnBC22's picture
Update README.md
df8b162
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
  - Multiple Choice
metrics:
  - accuracy
model-index:
  - name: bert-base-uncased-e_CARE
    results: []
datasets:
  - 12ml/e-CARE
language:
  - en
pipeline_tag: question-answering

bert-base-uncased-e_CARE

This model is a fine-tuned version of bert-base-uncased.

It achieves the following results on the evaluation set:

  • Loss: 1.7677
  • Accuracy: 0.7212

Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Multiple%20Choice/e-CARE/e_CARE_Multiple_Choice_Using_BERT.ipynb

Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training and evaluation data

Dataset Source: https://huggingface.co/datasets/12ml/e-CARE

Histogram of Input Lengths

Histogram of Input Lengths

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5637 1.0 1571 0.5282 0.7244
0.345 2.0 3142 0.6667 0.7320
0.1098 3.0 4713 1.3113 0.7257
0.0212 4.0 6284 1.8194 0.7225
0.0185 5.0 7855 1.7677 0.7212

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.2
  • Tokenizers 0.13.3