|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- EMBO/BLURB |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-large-cased-lora-finetuned-ner-EMBO-SourceData |
|
results: [] |
|
language: |
|
- en |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
# bert-large-cased-lora-finetuned-ner-EMBO-SourceData |
|
|
|
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased). |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1282 |
|
- Precision: 0.7999 |
|
- Recall: 0.8278 |
|
- F1: 0.8136 |
|
- Accuracy: 0.9584 |
|
|
|
## Model description |
|
|
|
For more information on how it was created, check out the following link: [https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/EMBO-SourceData%20with%20LoRA/NER%20Project%20Using%20EMBO-SourceData%20with%20LoRA.ipynb](https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/EMBO-SourceData%20with%20LoRA/NER%20Project%20Using%20EMBO-SourceData%20with%20LoRA.ipynb) |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: [https://huggingface.co/datasets/EMBO/BLURB](https://huggingface.co/datasets/EMBO/BLURB) |
|
|
|
**Token Distribution** |
|
![Token Distribution](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Token%20Classification/Monolingual/EMBO-SourceData%20with%20LoRA/Images/Class%20Distribution.png) |
|
|
|
**Token Distribution After Removing 'O' Tokens** |
|
![Token Distribution After Removing 'O' Tokens](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Token%20Classification/Monolingual/EMBO-SourceData%20with%20LoRA/Images/Class%20Distribution%20After%20Removing%20Other%20Token.png) |
|
|
|
**Histogram of Tokenized Input Lengths** |
|
|
|
![](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Token%20Classification/Monolingual/EMBO-SourceData%20with%20LoRA/Images/Histogram%20of%20Encoded%20Token%20Input%20Lengths.png) |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1552 | 1.0 | 3454 | 0.1499 | 0.7569 | 0.7968 | 0.7763 | 0.9516 | |
|
| 0.1179 | 2.0 | 6908 | 0.1328 | 0.7910 | 0.8120 | 0.8013 | 0.9564 | |
|
| 0.0998 | 3.0 | 10362 | 0.1282 | 0.7999 | 0.8278 | 0.8136 | 0.9584 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |