File size: 2,856 Bytes
20c1e24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-large-uncased-Fake_Reviews_Classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-large-uncased-Fake_Reviews_Classifier

This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5336
- Accuracy: 0.8381
- Weighted f1: 0.8142
- Micro f1: 0.8381
- Macro f1: 0.6308
- Weighted recall: 0.8381
- Micro recall: 0.8381
- Macro recall: 0.6090
- Weighted precision: 0.8101
- Micro precision: 0.8381
- Macro precision: 0.7029

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 0.633         | 1.0   | 10438 | 0.5608          | 0.8261   | 0.7914      | 0.8261   | 0.5745   | 0.8261          | 0.8261       | 0.5643       | 0.7844             | 0.8261          | 0.6542          |
| 0.6029        | 2.0   | 20876 | 0.6490          | 0.8331   | 0.7724      | 0.8331   | 0.5060   | 0.8331          | 0.8331       | 0.5239       | 0.7892             | 0.8331          | 0.6929          |
| 0.5478        | 3.0   | 31314 | 0.5508          | 0.8305   | 0.8071      | 0.8305   | 0.6189   | 0.8305          | 0.8305       | 0.6003       | 0.8002             | 0.8305          | 0.6784          |
| 0.513         | 4.0   | 41752 | 0.5459          | 0.8347   | 0.8101      | 0.8347   | 0.6224   | 0.8347          | 0.8347       | 0.6023       | 0.8049             | 0.8347          | 0.6916          |
| 0.5288        | 5.0   | 52190 | 0.5336          | 0.8381   | 0.8142      | 0.8381   | 0.6308   | 0.8381          | 0.8381       | 0.6090       | 0.8101             | 0.8381          | 0.7029          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3