File size: 2,856 Bytes
20c1e24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-large-uncased-Fake_Reviews_Classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-uncased-Fake_Reviews_Classifier
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5336
- Accuracy: 0.8381
- Weighted f1: 0.8142
- Micro f1: 0.8381
- Macro f1: 0.6308
- Weighted recall: 0.8381
- Micro recall: 0.8381
- Macro recall: 0.6090
- Weighted precision: 0.8101
- Micro precision: 0.8381
- Macro precision: 0.7029
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 0.633 | 1.0 | 10438 | 0.5608 | 0.8261 | 0.7914 | 0.8261 | 0.5745 | 0.8261 | 0.8261 | 0.5643 | 0.7844 | 0.8261 | 0.6542 |
| 0.6029 | 2.0 | 20876 | 0.6490 | 0.8331 | 0.7724 | 0.8331 | 0.5060 | 0.8331 | 0.8331 | 0.5239 | 0.7892 | 0.8331 | 0.6929 |
| 0.5478 | 3.0 | 31314 | 0.5508 | 0.8305 | 0.8071 | 0.8305 | 0.6189 | 0.8305 | 0.8305 | 0.6003 | 0.8002 | 0.8305 | 0.6784 |
| 0.513 | 4.0 | 41752 | 0.5459 | 0.8347 | 0.8101 | 0.8347 | 0.6224 | 0.8347 | 0.8347 | 0.6023 | 0.8049 | 0.8347 | 0.6916 |
| 0.5288 | 5.0 | 52190 | 0.5336 | 0.8381 | 0.8142 | 0.8381 | 0.6308 | 0.8381 | 0.8381 | 0.6090 | 0.8101 | 0.8381 | 0.7029 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3
|