|
--- |
|
license: apache-2.0 |
|
base_model: bert-large-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: bert-large-uncased-Fake_Reviews_Classifier |
|
results: [] |
|
--- |
|
|
|
# bert-large-uncased-Fake_Reviews_Classifier |
|
|
|
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased). |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5336 |
|
- Accuracy: 0.8381 |
|
- F1 |
|
- Weighted: 0.8142 |
|
- Micro: 0.8381 |
|
- Macro: 0.6308 |
|
- Recall |
|
- Weighted: 0.8381 |
|
- Micro: 0.8381 |
|
- Macro: 0.6090 |
|
- Precision |
|
- Weighted: 0.8101 |
|
- Micro: 0.8381 |
|
- Macro: 0.7029 |
|
|
|
## Model description |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Binary%20Classification/Fake%20Reviews/Fake%20Reviews%20Classification%20-%20BERT-Large%20With%20PEFT.ipynb |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. You are welcome to test and experiment with this model, but it is at your own risk/peril. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://www.kaggle.com/datasets/razamukhtar007/fake-reviews |
|
|
|
__Histogram of Word Counts of Reviews__ |
|
|
|
![Histogram of Word Counts of Reviews](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Binary%20Classification/Fake%20Reviews/Images/Histogram%20of%20Review%20Word%20Counts.png) |
|
|
|
__Class Distribution__ |
|
|
|
![Class Distribution](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Binary%20Classification/Fake%20Reviews/Images/Class%20Distribution.png) |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| |
|
| 0.633 | 1.0 | 10438 | 0.5608 | 0.8261 | 0.7914 | 0.8261 | __0.5745__ | 0.8261 | 0.8261 | 0.5643 | 0.7844 | 0.8261 | 0.6542 | |
|
| 0.6029 | 2.0 | 20876 | 0.6490 | 0.8331 | 0.7724 | 0.8331 | __0.5060__ | 0.8331 | 0.8331 | 0.5239 | 0.7892 | 0.8331 | 0.6929 | |
|
| 0.5478 | 3.0 | 31314 | 0.5508 | 0.8305 | 0.8071 | 0.8305 | __0.6189__ | 0.8305 | 0.8305 | 0.6003 | 0.8002 | 0.8305 | 0.6784 | |
|
| 0.513 | 4.0 | 41752 | 0.5459 | 0.8347 | 0.8101 | 0.8347 | __0.6224__ | 0.8347 | 0.8347 | 0.6023 | 0.8049 | 0.8347 | 0.6916 | |
|
| 0.5288 | 5.0 | 52190 | 0.5336 | 0.8381 | 0.8142 | 0.8381 | __0.6308__ | 0.8381 | 0.8381 | 0.6090 | 0.8101 | 0.8381 | 0.7029 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |