|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: codebert-base-Malicious_URLs |
|
results: [] |
|
language: |
|
- en |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# codebert-base-Malicious_URLs |
|
|
|
This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base). |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8225 |
|
- Accuracy: 0.7279 |
|
- Weighted f1: 0.6508 |
|
- Micro f1: 0.7279 |
|
- Macro f1: 0.4611 |
|
- Weighted recall: 0.7279 |
|
- Micro recall: 0.7279 |
|
- Macro recall: 0.4422 |
|
- Weighted precision: 0.6256 |
|
- Micro precision: 0.7279 |
|
- Macro precision: 0.5436 |
|
|
|
## Model description |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Multiclass%20Classification/Malicious%20URLs/Malicious%20URLs%20-%20CodeBERT.ipynb |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset |
|
|
|
_Input Word Length:_ |
|
|
|
![Length of Input Text (in Words)](https://github.com/DunnBC22/NLP_Projects/raw/main/Multiclass%20Classification/Malicious%20URLs/Images/Context%20Word%20Length.png) |
|
|
|
_Input Word Length By Class:_ |
|
|
|
![Length of Input Text (in Words) By Class](https://github.com/DunnBC22/NLP_Projects/raw/main/Multiclass%20Classification/Malicious%20URLs/Images/Context%20Word%20Length%20By%20Class.png) |
|
|
|
_Class Distribution:_ |
|
|
|
![Length of Input Text (in Words)](https://github.com/DunnBC22/NLP_Projects/raw/main/Sentiment%20Analysis/Sentiment%20Analysis%20of%20Commodity%20News%20-%20Gold%20(Transformer%20Comparison)/Images/Class%20Distribution.png) |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| |
|
| 0.8273 | 1.0 | 6450 | 0.8225 | 0.7279 | 0.6508 | 0.7279 | 0.4611 | 0.7279 | 0.7279 | 0.4422 | 0.6256 | 0.7279 | 0.5436 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |