roberta-base-finetuned-WikiNeural
This model is a fine-tuned version of roberta-base.
It achieves the following results on the evaluation set:
- Loss: 0.0871
- Loc
- Precision: 0.9276567437219359
- Recall: 0.9366918555835433
- F1: 0.9321524064171123
- Number: 5955
- Misc
- Precision: 0.8334231805929919
- Recall: 0.916419679905157
- F1: 0.872953133822699
- Number: 5061
- Org
- Precision: 0.9296179258833669
- Recall: 0.9382429689765149
- F1: 0.9339105339105339
- Number: 3449
- Per
- Precision: 0.9688723570869224
- Recall: 0.9499040307101727
- F1: 0.9592944369063772
- Number: 5210
- Overall
- Precision: 0.9124
- Recall: 0.9352
- F1: 0.9237
- Accuracy: 0.9910
Model description
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/WikiNeural%20-%20Transformer%20Comparison/POS%20Project%20with%20Wikineural%20Dataset%20-%20Roberta-Base%20Transformer.ipynb
Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
Training and evaluation data
Dataset Source: https://huggingface.co/datasets/Babelscape/wikineural
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1086 | 1.0 | 5795 | 0.1001 | 0.9149 | 0.9333 | 0.9240 | 5955 | 0.8158 | 0.9030 | 0.8572 | 5061 | 0.9134 | 0.9295 | 0.9214 | 3449 | 0.9642 | 0.9461 | 0.9550 | 5210 | 0.8997 | 0.9282 | 0.9137 | 0.9896 |
0.0727 | 2.0 | 11590 | 0.0871 | 0.9277 | 0.9367 | 0.9325 | 5955 | 0.8334 | 0.9164 | 0.8730 | 5061 | 0.9296 | 0.9382 | 0.9339 | 3449 | 0.9689 | 0.9499 | 0.9593 | 5210 | 0.9124 | 0.9352 | 0.9237 | 0.9910 |
- All values in the cahrt above are rounded to the nearest ten-thousandths.
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.1
- Datasets 2.13.0
- Tokenizers 0.13.3
- Downloads last month
- 110
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.