DunnBC22 commited on
Commit
017c5fc
·
1 Parent(s): 9118bf8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -13
README.md CHANGED
@@ -18,21 +18,37 @@ metrics:
18
  pipeline_tag: token-classification
19
  ---
20
 
21
-
22
  # roberta-base-finetuned-WikiNeural
23
 
24
  This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base).
25
 
26
  It achieves the following results on the evaluation set:
27
  - Loss: 0.0871
28
- - Loc: {'precision': 0.9276567437219359, 'recall': 0.9366918555835433, 'f1': 0.9321524064171123, 'number': 5955}
29
- - Misc: {'precision': 0.8334231805929919, 'recall': 0.916419679905157, 'f1': 0.872953133822699, 'number': 5061}
30
- - Org: {'precision': 0.9296179258833669, 'recall': 0.9382429689765149, 'f1': 0.9339105339105339, 'number': 3449}
31
- - Per: {'precision': 0.9688723570869224, 'recall': 0.9499040307101727, 'f1': 0.9592944369063772, 'number': 5210}
32
- - Overall Precision: 0.9124
33
- - Overall Recall: 0.9352
34
- - Overall F1: 0.9237
35
- - Overall Accuracy: 0.9910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  ## Model description
38
 
@@ -61,11 +77,12 @@ The following hyperparameters were used during training:
61
 
62
  ### Training results
63
 
64
- | Training Loss | Epoch | Step | Validation Loss | Loc | Misc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
65
- |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
66
- | 0.1086 | 1.0 | 5795 | 0.1001 | {'precision': 0.9148971193415638, 'recall': 0.9333333333333333, 'f1': 0.9240232751454697, 'number': 5955} | {'precision': 0.8157800785433774, 'recall': 0.9029836000790358, 'f1': 0.8571696520678983, 'number': 5061} | {'precision': 0.9133903133903134, 'recall': 0.9295447955929255, 'f1': 0.9213967524069551, 'number': 3449} | {'precision': 0.9642018779342723, 'recall': 0.9460652591170825, 'f1': 0.9550474714202672, 'number': 5210} | 0.8997 | 0.9282 | 0.9137 | 0.9896 |
67
- | 0.0727 | 2.0 | 11590 | 0.0871 | {'precision': 0.9276567437219359, 'recall': 0.9366918555835433, 'f1': 0.9321524064171123, 'number': 5955} | {'precision': 0.8334231805929919, 'recall': 0.916419679905157, 'f1': 0.872953133822699, 'number': 5061} | {'precision': 0.9296179258833669, 'recall': 0.9382429689765149, 'f1': 0.9339105339105339, 'number': 3449} | {'precision': 0.9688723570869224, 'recall': 0.9499040307101727, 'f1': 0.9592944369063772, 'number': 5210} | 0.9124 | 0.9352 | 0.9237 | 0.9910 |
68
 
 
69
 
70
  ### Framework versions
71
 
 
18
  pipeline_tag: token-classification
19
  ---
20
 
 
21
  # roberta-base-finetuned-WikiNeural
22
 
23
  This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base).
24
 
25
  It achieves the following results on the evaluation set:
26
  - Loss: 0.0871
27
+ - Loc
28
+ - Precision: 0.9276567437219359
29
+ - Recall: 0.9366918555835433
30
+ - F1: 0.9321524064171123
31
+ - Number: 5955
32
+ - Misc
33
+ - Precision: 0.8334231805929919
34
+ - Recall: 0.916419679905157
35
+ - F1: 0.872953133822699
36
+ - Number: 5061
37
+ - Org
38
+ - Precision: 0.9296179258833669
39
+ - Recall: 0.9382429689765149
40
+ - F1: 0.9339105339105339
41
+ - Number: 3449
42
+ - Per
43
+ - Precision: 0.9688723570869224
44
+ - Recall: 0.9499040307101727
45
+ - F1: 0.9592944369063772
46
+ - Number: 5210
47
+ - Overall
48
+ - Precision: 0.9124
49
+ - Recall: 0.9352
50
+ - F1: 0.9237
51
+ - Accuracy: 0.9910
52
 
53
  ## Model description
54
 
 
77
 
78
  ### Training results
79
 
80
+ | Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
81
+ |:-------------:|:-----:|:-----:|:----------:|:-----------:|:------------:|:------------:|:------------:|:-----------------:|:--------------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|
82
+ | 0.1086 | 1.0 | 5795 | 0.1001 | 0.9149 | 0.9333 | 0.9240 | 5955 | 0.8158 | 0.9030 | 0.8572 | 5061 | 0.9134 | 0.9295 | 0.9214 | 3449 | 0.9642 | 0.9461 | 0.9550 | 5210 | 0.8997 | 0.9282 | 0.9137 | 0.9896 |
83
+ | 0.0727 | 2.0 | 11590 | 0.0871 | 0.9277 | 0.9367 | 0.9325 | 5955 | 0.8334 | 0.9164 | 0.8730 | 5061 | 0.9296 | 0.9382 | 0.9339 | 3449 | 0.9689 | 0.9499 | 0.9593 | 5210 | 0.9124 | 0.9352 | 0.9237 | 0.9910 |
84
 
85
+ * All values in the cahrt above are rounded to the nearest ten-thousandths.
86
 
87
  ### Framework versions
88