Update README.md
Browse files
README.md
CHANGED
@@ -18,21 +18,37 @@ metrics:
|
|
18 |
pipeline_tag: token-classification
|
19 |
---
|
20 |
|
21 |
-
|
22 |
# roberta-base-finetuned-WikiNeural
|
23 |
|
24 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base).
|
25 |
|
26 |
It achieves the following results on the evaluation set:
|
27 |
- Loss: 0.0871
|
28 |
-
- Loc
|
29 |
-
-
|
30 |
-
-
|
31 |
-
-
|
32 |
-
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -61,11 +77,12 @@ The following hyperparameters were used during training:
|
|
61 |
|
62 |
### Training results
|
63 |
|
64 |
-
| Training Loss | Epoch | Step | Validation Loss | Loc
|
65 |
-
|
66 |
-
| 0.1086
|
67 |
-
| 0.0727
|
68 |
|
|
|
69 |
|
70 |
### Framework versions
|
71 |
|
|
|
18 |
pipeline_tag: token-classification
|
19 |
---
|
20 |
|
|
|
21 |
# roberta-base-finetuned-WikiNeural
|
22 |
|
23 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base).
|
24 |
|
25 |
It achieves the following results on the evaluation set:
|
26 |
- Loss: 0.0871
|
27 |
+
- Loc
|
28 |
+
- Precision: 0.9276567437219359
|
29 |
+
- Recall: 0.9366918555835433
|
30 |
+
- F1: 0.9321524064171123
|
31 |
+
- Number: 5955
|
32 |
+
- Misc
|
33 |
+
- Precision: 0.8334231805929919
|
34 |
+
- Recall: 0.916419679905157
|
35 |
+
- F1: 0.872953133822699
|
36 |
+
- Number: 5061
|
37 |
+
- Org
|
38 |
+
- Precision: 0.9296179258833669
|
39 |
+
- Recall: 0.9382429689765149
|
40 |
+
- F1: 0.9339105339105339
|
41 |
+
- Number: 3449
|
42 |
+
- Per
|
43 |
+
- Precision: 0.9688723570869224
|
44 |
+
- Recall: 0.9499040307101727
|
45 |
+
- F1: 0.9592944369063772
|
46 |
+
- Number: 5210
|
47 |
+
- Overall
|
48 |
+
- Precision: 0.9124
|
49 |
+
- Recall: 0.9352
|
50 |
+
- F1: 0.9237
|
51 |
+
- Accuracy: 0.9910
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
81 |
+
|:-------------:|:-----:|:-----:|:----------:|:-----------:|:------------:|:------------:|:------------:|:-----------------:|:--------------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|
|
82 |
+
| 0.1086 | 1.0 | 5795 | 0.1001 | 0.9149 | 0.9333 | 0.9240 | 5955 | 0.8158 | 0.9030 | 0.8572 | 5061 | 0.9134 | 0.9295 | 0.9214 | 3449 | 0.9642 | 0.9461 | 0.9550 | 5210 | 0.8997 | 0.9282 | 0.9137 | 0.9896 |
|
83 |
+
| 0.0727 | 2.0 | 11590 | 0.0871 | 0.9277 | 0.9367 | 0.9325 | 5955 | 0.8334 | 0.9164 | 0.8730 | 5061 | 0.9296 | 0.9382 | 0.9339 | 3449 | 0.9689 | 0.9499 | 0.9593 | 5210 | 0.9124 | 0.9352 | 0.9237 | 0.9910 |
|
84 |
|
85 |
+
* All values in the cahrt above are rounded to the nearest ten-thousandths.
|
86 |
|
87 |
### Framework versions
|
88 |
|