ppo-LunarLander-v2 / config.json
EAV123's picture
PPO LunarLander-v2 trained agent
37a10ac
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f00aa16c9d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00aa16ca60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00aa16caf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00aa16cb80>", "_build": "<function ActorCriticPolicy._build at 0x7f00aa16cc10>", "forward": "<function ActorCriticPolicy.forward at 0x7f00aa16cca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f00aa16cd30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00aa16cdc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f00aa16ce50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00aa16cee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00aa16cf70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00aa16d000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f00b1cc27c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689245290247882934, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAoBLz/KR0+WlX9PYDNRL5NqqQ8EvTwvAAAAAAAAAAAs7fiPYAUlD/GDDE9pn57vmGg/D0mQRy+AAAAAAAAAACzUjs9cf1+uRh0/7u95wA48BH7uorHP7cAAIA/AACAP00UrD0Uzoq6djGVOdwG/bVRMAc7wPn2tAAAgD8AAIA/DUqWPUhpkLpFRac6/vGjNfrqADt6EsK5AACAPwAAgD9z1IA91K5fPzDNPr6J9pS+s06pva5rQTwAAAAAAAAAAM3A7juuVZe6bgq9uhMcl7YqUtA6EIQHNgAAgD8AAIA/s+ZEvSkICbqiSJQ8H9mMNQr30zke3400AAAAAAAAgD9mtJy8Kbg6ugu9ejore4m2OojUus/NkLkAAIA/AACAP2bSGLxIY4G6C8bcO8WQujgDBoG62I0RugAAgD8AAIA/AGWWPFx7YLpblk87XhqpN/TLMzqgToo2AACAPwAAgD+zuSM+FLCBvNJtkTsbVM65OCbgvZggx7oAAAAAAACAP7NMLz0pJG668/9uOqnzUTVuOhe7NSeMuQAAgD8AAIA/JlOCva5HgbjWtYA5iW/yNEjkwDtl9Ji4AACAPwAAgD8AcNo6H2WqucDakLnfRIG02+oUO6DRrTgAAIA/AACAP2Y+NT2ukbK6MRUjuvpvFbXA7DU6om86OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGU6wtSQ5m2MAWyUTegDjAF0lEdAoI7qTbFju3V9lChoBkdAYu3/p+tr9GgHTegDaAhHQKCPI0WuX/p1fZQoaAZHQCPpCUornT1oB00rAWgIR0CgkHbgsK9gdX2UKGgGR0A+JH/cWTHKaAdNBQFoCEdAoJJFcSoOx3V9lChoBkdAY+HzDn/1hGgHTegDaAhHQKCS9R8c+7l1fZQoaAZHQEC8QEpy6tloB00hAWgIR0CglNVNQCSzdX2UKGgGR0BhXeBas6q9aAdN6ANoCEdAoJeSfWcz7HV9lChoBkdAXyAuRLbpNmgHTegDaAhHQKCYg6OHWSV1fZQoaAZHQDuAtoSL61toB00TAWgIR0Cgmlgy/KyOdX2UKGgGR0BeFQbMottiaAdN6ANoCEdAoJwTOC5Et3V9lChoBkdAYTM8QI2OyWgHTegDaAhHQKCcc+36Q/51fZQoaAZHQGMpjNpudf9oB03oA2gIR0Cgnms/Y8MedX2UKGgGR0BNFL9VFQVLaAdNGwFoCEdAoKqjEP1+RnV9lChoBkdAY7wikfs/p2gHTegDaAhHQKCs879Q40d1fZQoaAZHQGUyMkIHC41oB03oA2gIR0CgrTdLYf4idX2UKGgGR0BjWBJGvwEyaAdN6ANoCEdAoLAg77sOXnV9lChoBkdAYrdZOi35OGgHTegDaAhHQKCwLz4k/r11fZQoaAZHQGN7SUcGTs9oB03oA2gIR0CgtC/nGKhtdX2UKGgGR0BnDO7QLNOeaAdN6ANoCEdAoLdpKvmoznV9lChoBkdAZexRD1Gsm2gHTegDaAhHQKC3rCw8nu11fZQoaAZHQGFvsC1Z1V5oB03oA2gIR0CguSBuO0b+dX2UKGgGR0BlMIarFOwgaAdN6ANoCEdAoLvlhG6PKnV9lChoBkdAZYeDf3vhImgHTegDaAhHQKC9/vhIe5p1fZQoaAZHQEAi27Wd3B5oB0vuaAhHQKC/LtJFspJ1fZQoaAZHQGBl14gRsdloB03oA2gIR0Cgwx/TLGJfdX2UKGgGR0BkOvymQ8wIaAdN6ANoCEdAoMWaAWi1zHV9lChoBkdAYSzrOZ9d/2gHTegDaAhHQKDHhxH5Jsh1fZQoaAZHQGKzAk1Mue1oB03oA2gIR0Cgx+k6cRUWdX2UKGgGR0Bl3cyN4qwyaAdN6ANoCEdAoMnt7dBSk3V9lChoBkdAW8hnAZbY9WgHTegDaAhHQKDTpftx+8Z1fZQoaAZHQFyqqW1MM7VoB03oA2gIR0Cg1cy1uzhQdX2UKGgGR0BmL7QokRjCaAdN6ANoCEdAoNYT3oLXtnV9lChoBkdAQF7FyaNMoWgHTR4BaAhHQKDYcSs8xKx1fZQoaAZHQGNuVHnU2DRoB03oA2gIR0Cg2PyPMjeLdX2UKGgGR0BilR7PY4ACaAdN6ANoCEdAoNkLcM3IdXV9lChoBkdAYwuRfWtlqmgHTegDaAhHQKDd2aR6nix1fZQoaAZHQEOdQ0GeMAFoB003AWgIR0Cg4QwFTvRadX2UKGgGR0Bjs3xtpEhJaAdN6ANoCEdAoOLGtjkMkXV9lChoBkdAKJx+rlvIfmgHTRIBaAhHQKDje1LJ0XB1fZQoaAZHQGUYFR51Ng1oB03oA2gIR0Cg5JJaaCtjdX2UKGgGR0BlUU2cawUyaAdN6ANoCEdAoOdY4sEq2HV9lChoBkdAYv0t+1Bt12gHTegDaAhHQKDpZwgkkbB1fZQoaAZHQGYXgh8pkPNoB03oA2gIR0Cg6ksCDEm6dX2UKGgGR0BmnJNKyv9taAdN6ANoCEdAoO0m/cnE23V9lChoBkdAYbkBNmDlHWgHTegDaAhHQKDu+lNUOut1fZQoaAZHQGbVrGrCFbpoB03oA2gIR0Cg8KfNZ/0/dX2UKGgGR0BksIjjaPCEaAdN6ANoCEdAoPMtc8kleHV9lChoBkdAY1S46Oo5xWgHTegDaAhHQKD00h9LHuJ1fZQoaAZHQGOugJLM9r5oB03oA2gIR0ChAgxBNVR2dX2UKGgGR0AzZGDcuanaaAdNGgFoCEdAoQPxi5NGmXV9lChoBkdAYTP5M10knmgHTegDaAhHQKEFCQnQY1p1fZQoaAZHQF0Mz1bqyGBoB03oA2gIR0ChBRl/YraudX2UKGgGR0BeJuH31zySaAdN6ANoCEdAoQk+XVsk6nV9lChoBkdAOhKTfR/mT2gHTQkBaAhHQKEKW0GeMAF1fZQoaAZHQGZ7ei8FpwloB03oA2gIR0ChC5P69CeFdX2UKGgGR0Bi0bKJVKf4aAdN6ANoCEdAoQzCZtvXLHV9lChoBkdASomGoJiRXGgHS/loCEdAoQ0ZZSvTw3V9lChoBkdAXTNlXiiqQ2gHTegDaAhHQKENQD8tPHl1fZQoaAZHQGIJNTLns9loB03oA2gIR0ChDiRgy/KydX2UKGgGR0BhS5xtHhCMaAdN6ANoCEdAoRCvyqdYn3V9lChoBkdAYVUlgtvn82gHTegDaAhHQKESjoIv8Il1fZQoaAZHQF21Ve8f3exoB03oA2gIR0ChE3U+TvAodX2UKGgGR0BlFoQL/jsEaAdN6ANoCEdAoRbkRe1KG3V9lChoBkdAZDjIMBp5/2gHTegDaAhHQKEZXK15Sm91fZQoaAZHQGPZd5Y5ksloB03oA2gIR0ChHx79If8udX2UKGgGR0BkIvVwxWT5aAdN6ANoCEdAoSDKvkili3V9lChoBkdAY2vFBIFvAGgHTegDaAhHQKEttc/t6X11fZQoaAZHQGKnOez2OABoB03oA2gIR0ChLt3Upd8idX2UKGgGR0A648UEgW8AaAdL/GgIR0ChMRX531SPdX2UKGgGR0BmYaJKraM8aAdN6ANoCEdAoTOJGrjo6nV9lChoBkdAZmkaP0Zm7WgHTegDaAhHQKE06Nm16Vt1fZQoaAZHQGf5P863iJhoB03oA2gIR0ChNmjq4YrKdX2UKGgGR0BmVuBz3h4uaAdN6ANoCEdAoTfr/VAiV3V9lChoBkdAZB5q1w5vL2gHTegDaAhHQKE4YmzjWCp1fZQoaAZHQGDCC8vmHQBoB03oA2gIR0ChOI5vDP4VdX2UKGgGR0BieoCyQgcMaAdN6ANoCEdAoTmeIXTEznV9lChoBkdAYllCHARChWgHTegDaAhHQKE8M5+Ytxx1fZQoaAZHQEIb+WnjyWloB00BAWgIR0ChPWSX+l0pdX2UKGgGR0BigZAbADaHaAdN6ANoCEdAoT3Kr92ovXV9lChoBkdAXjZh1DBuXWgHTegDaAhHQKE+jj9XLeR1fZQoaAZHQGY9unl4keJoB03oA2gIR0ChQQnhCMP0dX2UKGgGR0BkhS7mMfihaAdN6ANoCEdAoUK5uCPIXHV9lChoBkdAZJUhNdqtYGgHTegDaAhHQKFG+mDUVi51fZQoaAZHQGODVwo9cKRoB03oA2gIR0ChWCQqRU3odX2UKGgGR0Bg3Y/PgNwzaAdN6ANoCEdAoVlYbGWD6HV9lChoBkdAaCnFa0QbuWgHTegDaAhHQKFbml+EytV1fZQoaAZHQGJTMa0hNdtoB03oA2gIR0ChXYrWAf+1dX2UKGgGR0BlrGBnSOR1aAdN6ANoCEdAoV+prLyMDXV9lChoBkdAZC0XHBDXv2gHTegDaAhHQKFgx8HfMwF1fZQoaAZHQGKPvDxb0OFoB03oA2gIR0ChYRrmQr+YdX2UKGgGR0BlMloexOclaAdN6ANoCEdAoWE+WyC4BnV9lChoBkdAYd3siSq2jWgHTegDaAhHQKFiHbAUL2J1fZQoaAZHQGdItq59Vm1oB03oA2gIR0ChZIInKGL2dX2UKGgGR0BlOpwuM+/yaAdN6ANoCEdAoWXTlzU7S3V9lChoBkdAYi9G6PKdQWgHTegDaAhHQKFmSGM4tHx1fZQoaAZHQGMWNg0CRwJoB03oA2gIR0ChZyBshxHYdX2UKGgGR0BmeidrftQbaAdN6ANoCEdAoWnMUbkwOHV9lChoBkdAZA42/i5uqGgHTegDaAhHQKFrqka/ATJ1fZQoaAZHQFt6uUUwi7loB03oA2gIR0Chcjjtoi9qdX2UKGgGR0BISr1/Ue+3aAdNDwFoCEdAoXW6K1og3nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}