English
File size: 9,327 Bytes
5df454a
e1d1b29
 
4ca5c5f
e1d1b29
5bb6030
 
 
 
 
 
dcdef80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1d1b29
4a9a568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bddf3a0
 
 
e1d1b29
 
 
 
 
4a9a568
 
 
e1d1b29
 
 
4a9a568
e1d1b29
bddf3a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
license: apache-2.0

# BPMN element detection


## Model description

This project aims to detect Business Process Model and Notation (BPMN) elements from hand-drawn diagrams using a machine learning model. The model is trained to recognize various BPMN elements such as tasks, events, gateways, and connectors from images of hand-drawn diagrams.


The dataset contains 15 target labels:

- **AGENT**
  * `pool`
  * `lane`

- **TASK**
  * `task`
  * `subProcess`

- **TASK_INFO**
  * `dataObject`
  * `dataStore`

- **PROCESS_INFO**
  * `background`

- **CONDITION**
  * `exclusiveGateway`
  * `parallelGateway`
  * `eventBasedGateway`

- **EVENT**
  * `event`
  * `messageEvent`
  * `timerEvent`

- **FLOW**
  * `sequenceFlow`
  * `dataAssociation`
  * `messageFlow`

## Results per type

It achieves the following results on the evaluation set with objects:
- Labels Precision: 0.97
- Precision: 0.97
- Recall: 0.95
- F1: 0.96

It achieves the following results on the evaluation set with arrows:
- Labels precision: 0.98
- Precision: 0.92
- Recall: 0.93
- F1: 0.92
- Keypoints Accuracy: 0.71 

# Results per class

| Class             | Precision | Recall   | F1      |
|:-----------------:|:---------:|:--------:|:-------:|
| task              | 0.9518    | 0.9875   | 0.9693  |
| exclusiveGateway  | 0.9548    | 0.9427   | 0.9487  |
| event             | 0.9515    | 0.9235   | 0.9373  |
| parallelGateway   | 0.9333    | 0.9180   | 0.9256  |
| messageEvent      | 0.9291    | 0.9365   | 0.9328  |
| pool              | 0.8797    | 0.936    | 0.9070  |
| lane              | 0.9178    | 0.67     | 0.7746  |
| dataObject        | 0.9333    | 0.9565   | 0.9448  |
| dataStore         | 1.0       | 0.64     | 0.7805  |
| eventBasedGateway | 0.7273    | 0.7273   | 0.7273  |
| timerEvent        | 0.8571    | 0.75     | 0.8     |
| sequenceFlow      | 0.9292    | 0.9605   | 0.9446  |
| dataAssociation   | 0.8472    | 0.8095   | 0.8279  |
| messageFlow       | 0.8589    | 0.7910   | 0.8235  |


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0176
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Example of Training results
| Epoch | Avg Loss | Test Loss | Classifier Loss | Box Reg Loss | Objectness Loss | RPN Box Reg Loss | Precision | Recall | F1 Score |
|:-----:|:--------:|:---------:|:---------------:|:------------:|:---------------:|:----------------:|:---------:|:------:|:--------:|
| 1     | 3.9451   | 2.0591    | 2.4416          | 0.5426       | 0.6502          | 0.3107           | 0.2763    | 0.0393 | 0.0689   |
| 2     | 2.7259   | 1.5387    | 1.6724          | 0.6697       | 0.1868          | 0.1969           | 0.5754    | 0.3358 | 0.4241   |
| 3     | 2.2004   | 1.1307    | 1.3860          | 0.5330       | 0.1216          | 0.1598           | 0.8657    | 0.6841 | 0.7643   |
| 4     | 1.8611   | 1.0110    | 1.1775          | 0.4172       | 0.1099          | 0.1565           | 0.7708    | 0.7790 | 0.7749   |
| 5     | 1.7461   | 0.9593    | 1.1202          | 0.3820       | 0.0971          | 0.1468           | 0.8542    | 0.8046 | 0.8287   |
| 6     | 1.5859   | 0.8956    | 0.9986          | 0.3590       | 0.0872          | 0.1412           | 0.8884    | 0.8002 | 0.8420   |
| 7     | 1.5621   | 0.9073    | 1.0214          | 0.3351       | 0.0776          | 0.1280           | 0.9435    | 0.8034 | 0.8678   |
| 8     | 1.5194   | 0.8695    | 0.9881          | 0.3261       | 0.0738          | 0.1314           | 0.9048    | 0.8246 | 0.8628   |
| 9     | 1.5449   | 0.9014    | 1.0105          | 0.3229       | 0.0769          | 0.1346           | 0.9478    | 0.8046 | 0.8704   |
| 10    | 1.5805   | 0.8134    | 1.0333          | 0.3338       | 0.0703          | 0.1431           | 0.8920    | 0.8920 | 0.8920   |
| 11    | 1.3838   | 0.8097    | 0.8743          | 0.3065       | 0.0653          | 0.1376           | 0.9634    | 0.8371 | 0.8958   |
| 12    | 1.3582   | 0.7362    | 0.8751          | 0.2909       | 0.0617          | 0.1306           | 0.9457    | 0.8596 | 0.9006   |
| 13    | 1.3126   | 0.7149    | 0.8347          | 0.2921       | 0.0593          | 0.1264           | 0.9152    | 0.9295 | 0.9223   |
| 14    | 1.3532   | 0.7775    | 0.9079          | 0.2783       | 0.0543          | 0.1128           | 0.9639    | 0.8508 | 0.9038   |
| 15    | 1.3188   | 0.6738    | 0.8986          | 0.2720       | 0.0434          | 0.1048           | 0.8856    | 0.9419 | 0.9129   |
| 16    | 1.2512   | 0.7478    | 0.7840          | 0.2784       | 0.0621          | 0.1268           | 0.9181    | 0.9101 | 0.9141   |
| 17    | 1.2909   | 0.6556    | 0.8425          | 0.2778       | 0.0547          | 0.1159           | 0.9012    | 0.9282 | 0.9145   |
| 18    | 1.2526   | 0.7003    | 0.8442          | 0.2607       | 0.0443          | 0.1034           | 0.9169    | 0.9020 | 0.9094   |
| 19    | 1.1980   | 0.7136    | 0.8062          | 0.2528       | 0.0361          | 0.1029           | 0.9520    | 0.9157 | 0.9335   |
| 20    | 1.1821   | 0.6308    | 0.7895          | 0.2517       | 0.0378          | 0.1030           | 0.9023    | 0.9513 | 0.9262   |
| 21    | 1.0843   | 0.6883    | 0.7168          | 0.2402       | 0.0316          | 0.0957           | 0.9348    | 0.9032 | 0.9187   |
| 22    | 1.1058   | 0.6192    | 0.7367          | 0.2336       | 0.0374          | 0.0981           | 0.9321    | 0.9513 | 0.9416   |
| 23    | 1.0699   | 0.5962    | 0.7119          | 0.2340       | 0.0306          | 0.0935           | 0.9353    | 0.9476 | 0.9414   |
| 24    | 1.0616   | 0.6674    | 0.7031          | 0.2367       | 0.0311          | 0.0908           | 0.9418    | 0.9301 | 0.9359   |
| 25    | 1.0784   | 0.6158    | 0.7275          | 0.2311       | 0.0295          | 0.0904           | 0.9176    | 0.9320 | 0.9247   |
| 26    | 1.0618   | 0.6483    | 0.7121          | 0.2283       | 0.0297          | 0.0916           | 0.9411    | 0.9182 | 0.9295   |
| 27    | 1.0530   | 0.5958    | 0.7139          | 0.2236       | 0.0279          | 0.0876           | 0.9477    | 0.9395 | 0.9436   |
| 28    | 1.0452   | 0.5964    | 0.7097          | 0.2223       | 0.0283          | 0.0849           | 0.9465    | 0.9494 | 0.9480   |
| 29    | 1.0966   | 0.6288    | 0.7795          | 0.2176       | 0.0203          | 0.0792           | 0.9558    | 0.9320 | 0.9437   |
| 30    | 1.0506   | 0.5956    | 0.7312          | 0.2142       | 0.0195          | 0.0856           | 0.9370    | 0.9370 | 0.9370   |
| 31    | 1.0030   | 0.6099    | 0.6777          | 0.2163       | 0.0204          | 0.0886           | 0.9506    | 0.9251 | 0.9377   |
| 32    | 0.9748   | 0.5976    | 0.6610          | 0.2098       | 0.0201          | 0.0839           | 0.9527    | 0.9313 | 0.9419   |
| 33    | 0.9540   | 0.5907    | 0.6402          | 0.2059       | 0.0216          | 0.0863           | 0.9536    | 0.9238 | 0.9385   |
| 34    | 0.9730   | 0.5809    | 0.6500          | 0.2076       | 0.0281          | 0.0873           | 0.9407    | 0.9413 | 0.9410   |
| 35    | 0.9894   | 0.5837    | 0.6831          | 0.2066       | 0.0202          | 0.0794           | 0.9451    | 0.9345 | 0.9397   |
| 36    | 0.9042   | 0.5534    | 0.5873          | 0.2096       | 0.0214          | 0.0860           | 0.9460    | 0.9519 | 0.9490   |
| 37    | 0.9546   | 0.5562    | 0.6400          | 0.2112       | 0.0216          | 0.0818           | 0.9260    | 0.9457 | 0.9358   |
| 38    | 0.9806   | 0.5792    | 0.6800          | 0.2031       | 0.0175          | 0.0800           | 0.9476    | 0.9363 | 0.9419   |
| 39    | 0.9294   | 0.5703    | 0.6247          | 0.2016       | 0.0204          | 0.0826           | 0.9401    | 0.9501 | 0.9450   |
| 40    | 0.9786   | 0.5880    | 0.6733          | 0.2010       | 0.0268          | 0.0775           | 0.9375    | 0.9170 | 0.9271   |
| 41    | 1.0026   | 0.5875    | 0.7073          | 0.2033       | 0.0179          | 0.0742           | 0.9476    | 0.9251 | 0.9362   |
| 42    | 0.9567   | 0.5724    | 0.6677          | 0.1992       | 0.0164          | 0.0734           | 0.9468    | 0.9332 | 0.9400   |
| 43    | 0.8747   | 0.5709    | 0.5794          | 0.1980       | 0.0159          | 0.0814           | 0.9557    | 0.9432 | 0.9494   |
| 44    | 1.0310   | 0.5497    | 0.7392          | 0.1956       | 0.0254          | 0.0709           | 0.9589    | 0.9313 | 0.9449   |
| 45    | 0.9526   | 0.5580    | 0.6598          | 0.1982       | 0.0185          | 0.0762           | 0.9401    | 0.9413 | 0.9407   |
| 46    | 0.8753   | 0.5548    | 0.5940          | 0.1939       | 0.0176          | 0.0698           | 0.9468    | 0.9438 | 0.9453   |
| 47    | 0.9328   | 0.5735    | 0.6493          | 0.1953       | 0.0163          | 0.0720           | 0.9534    | 0.9320 | 0.9426   |
| 48    | 0.9019   | 0.5605    | 0.6071          | 0.2002       | 0.0182          | 0.0765           | 0.9496    | 0.9413 | 0.9455   |
| 49    | 0.8335   | 0.5637    | 0.5459          | 0.1918       | 0.0175          | 0.0783           | 0.9588    | 0.9307 | 0.9446   |
| 50    | 0.9043   | 0.5617    | 0.6179          | 0.1933       | 0.0154          | 0.0776           | 0.9597    | 0.9370 | 0.9482   |