File size: 9,327 Bytes
5df454a e1d1b29 4ca5c5f e1d1b29 5bb6030 dcdef80 e1d1b29 4a9a568 bddf3a0 e1d1b29 4a9a568 e1d1b29 4a9a568 e1d1b29 bddf3a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
license: apache-2.0
# BPMN element detection
## Model description
This project aims to detect Business Process Model and Notation (BPMN) elements from hand-drawn diagrams using a machine learning model. The model is trained to recognize various BPMN elements such as tasks, events, gateways, and connectors from images of hand-drawn diagrams.
The dataset contains 15 target labels:
- **AGENT**
* `pool`
* `lane`
- **TASK**
* `task`
* `subProcess`
- **TASK_INFO**
* `dataObject`
* `dataStore`
- **PROCESS_INFO**
* `background`
- **CONDITION**
* `exclusiveGateway`
* `parallelGateway`
* `eventBasedGateway`
- **EVENT**
* `event`
* `messageEvent`
* `timerEvent`
- **FLOW**
* `sequenceFlow`
* `dataAssociation`
* `messageFlow`
## Results per type
It achieves the following results on the evaluation set with objects:
- Labels Precision: 0.97
- Precision: 0.97
- Recall: 0.95
- F1: 0.96
It achieves the following results on the evaluation set with arrows:
- Labels precision: 0.98
- Precision: 0.92
- Recall: 0.93
- F1: 0.92
- Keypoints Accuracy: 0.71
# Results per class
| Class | Precision | Recall | F1 |
|:-----------------:|:---------:|:--------:|:-------:|
| task | 0.9518 | 0.9875 | 0.9693 |
| exclusiveGateway | 0.9548 | 0.9427 | 0.9487 |
| event | 0.9515 | 0.9235 | 0.9373 |
| parallelGateway | 0.9333 | 0.9180 | 0.9256 |
| messageEvent | 0.9291 | 0.9365 | 0.9328 |
| pool | 0.8797 | 0.936 | 0.9070 |
| lane | 0.9178 | 0.67 | 0.7746 |
| dataObject | 0.9333 | 0.9565 | 0.9448 |
| dataStore | 1.0 | 0.64 | 0.7805 |
| eventBasedGateway | 0.7273 | 0.7273 | 0.7273 |
| timerEvent | 0.8571 | 0.75 | 0.8 |
| sequenceFlow | 0.9292 | 0.9605 | 0.9446 |
| dataAssociation | 0.8472 | 0.8095 | 0.8279 |
| messageFlow | 0.8589 | 0.7910 | 0.8235 |
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0176
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Example of Training results
| Epoch | Avg Loss | Test Loss | Classifier Loss | Box Reg Loss | Objectness Loss | RPN Box Reg Loss | Precision | Recall | F1 Score |
|:-----:|:--------:|:---------:|:---------------:|:------------:|:---------------:|:----------------:|:---------:|:------:|:--------:|
| 1 | 3.9451 | 2.0591 | 2.4416 | 0.5426 | 0.6502 | 0.3107 | 0.2763 | 0.0393 | 0.0689 |
| 2 | 2.7259 | 1.5387 | 1.6724 | 0.6697 | 0.1868 | 0.1969 | 0.5754 | 0.3358 | 0.4241 |
| 3 | 2.2004 | 1.1307 | 1.3860 | 0.5330 | 0.1216 | 0.1598 | 0.8657 | 0.6841 | 0.7643 |
| 4 | 1.8611 | 1.0110 | 1.1775 | 0.4172 | 0.1099 | 0.1565 | 0.7708 | 0.7790 | 0.7749 |
| 5 | 1.7461 | 0.9593 | 1.1202 | 0.3820 | 0.0971 | 0.1468 | 0.8542 | 0.8046 | 0.8287 |
| 6 | 1.5859 | 0.8956 | 0.9986 | 0.3590 | 0.0872 | 0.1412 | 0.8884 | 0.8002 | 0.8420 |
| 7 | 1.5621 | 0.9073 | 1.0214 | 0.3351 | 0.0776 | 0.1280 | 0.9435 | 0.8034 | 0.8678 |
| 8 | 1.5194 | 0.8695 | 0.9881 | 0.3261 | 0.0738 | 0.1314 | 0.9048 | 0.8246 | 0.8628 |
| 9 | 1.5449 | 0.9014 | 1.0105 | 0.3229 | 0.0769 | 0.1346 | 0.9478 | 0.8046 | 0.8704 |
| 10 | 1.5805 | 0.8134 | 1.0333 | 0.3338 | 0.0703 | 0.1431 | 0.8920 | 0.8920 | 0.8920 |
| 11 | 1.3838 | 0.8097 | 0.8743 | 0.3065 | 0.0653 | 0.1376 | 0.9634 | 0.8371 | 0.8958 |
| 12 | 1.3582 | 0.7362 | 0.8751 | 0.2909 | 0.0617 | 0.1306 | 0.9457 | 0.8596 | 0.9006 |
| 13 | 1.3126 | 0.7149 | 0.8347 | 0.2921 | 0.0593 | 0.1264 | 0.9152 | 0.9295 | 0.9223 |
| 14 | 1.3532 | 0.7775 | 0.9079 | 0.2783 | 0.0543 | 0.1128 | 0.9639 | 0.8508 | 0.9038 |
| 15 | 1.3188 | 0.6738 | 0.8986 | 0.2720 | 0.0434 | 0.1048 | 0.8856 | 0.9419 | 0.9129 |
| 16 | 1.2512 | 0.7478 | 0.7840 | 0.2784 | 0.0621 | 0.1268 | 0.9181 | 0.9101 | 0.9141 |
| 17 | 1.2909 | 0.6556 | 0.8425 | 0.2778 | 0.0547 | 0.1159 | 0.9012 | 0.9282 | 0.9145 |
| 18 | 1.2526 | 0.7003 | 0.8442 | 0.2607 | 0.0443 | 0.1034 | 0.9169 | 0.9020 | 0.9094 |
| 19 | 1.1980 | 0.7136 | 0.8062 | 0.2528 | 0.0361 | 0.1029 | 0.9520 | 0.9157 | 0.9335 |
| 20 | 1.1821 | 0.6308 | 0.7895 | 0.2517 | 0.0378 | 0.1030 | 0.9023 | 0.9513 | 0.9262 |
| 21 | 1.0843 | 0.6883 | 0.7168 | 0.2402 | 0.0316 | 0.0957 | 0.9348 | 0.9032 | 0.9187 |
| 22 | 1.1058 | 0.6192 | 0.7367 | 0.2336 | 0.0374 | 0.0981 | 0.9321 | 0.9513 | 0.9416 |
| 23 | 1.0699 | 0.5962 | 0.7119 | 0.2340 | 0.0306 | 0.0935 | 0.9353 | 0.9476 | 0.9414 |
| 24 | 1.0616 | 0.6674 | 0.7031 | 0.2367 | 0.0311 | 0.0908 | 0.9418 | 0.9301 | 0.9359 |
| 25 | 1.0784 | 0.6158 | 0.7275 | 0.2311 | 0.0295 | 0.0904 | 0.9176 | 0.9320 | 0.9247 |
| 26 | 1.0618 | 0.6483 | 0.7121 | 0.2283 | 0.0297 | 0.0916 | 0.9411 | 0.9182 | 0.9295 |
| 27 | 1.0530 | 0.5958 | 0.7139 | 0.2236 | 0.0279 | 0.0876 | 0.9477 | 0.9395 | 0.9436 |
| 28 | 1.0452 | 0.5964 | 0.7097 | 0.2223 | 0.0283 | 0.0849 | 0.9465 | 0.9494 | 0.9480 |
| 29 | 1.0966 | 0.6288 | 0.7795 | 0.2176 | 0.0203 | 0.0792 | 0.9558 | 0.9320 | 0.9437 |
| 30 | 1.0506 | 0.5956 | 0.7312 | 0.2142 | 0.0195 | 0.0856 | 0.9370 | 0.9370 | 0.9370 |
| 31 | 1.0030 | 0.6099 | 0.6777 | 0.2163 | 0.0204 | 0.0886 | 0.9506 | 0.9251 | 0.9377 |
| 32 | 0.9748 | 0.5976 | 0.6610 | 0.2098 | 0.0201 | 0.0839 | 0.9527 | 0.9313 | 0.9419 |
| 33 | 0.9540 | 0.5907 | 0.6402 | 0.2059 | 0.0216 | 0.0863 | 0.9536 | 0.9238 | 0.9385 |
| 34 | 0.9730 | 0.5809 | 0.6500 | 0.2076 | 0.0281 | 0.0873 | 0.9407 | 0.9413 | 0.9410 |
| 35 | 0.9894 | 0.5837 | 0.6831 | 0.2066 | 0.0202 | 0.0794 | 0.9451 | 0.9345 | 0.9397 |
| 36 | 0.9042 | 0.5534 | 0.5873 | 0.2096 | 0.0214 | 0.0860 | 0.9460 | 0.9519 | 0.9490 |
| 37 | 0.9546 | 0.5562 | 0.6400 | 0.2112 | 0.0216 | 0.0818 | 0.9260 | 0.9457 | 0.9358 |
| 38 | 0.9806 | 0.5792 | 0.6800 | 0.2031 | 0.0175 | 0.0800 | 0.9476 | 0.9363 | 0.9419 |
| 39 | 0.9294 | 0.5703 | 0.6247 | 0.2016 | 0.0204 | 0.0826 | 0.9401 | 0.9501 | 0.9450 |
| 40 | 0.9786 | 0.5880 | 0.6733 | 0.2010 | 0.0268 | 0.0775 | 0.9375 | 0.9170 | 0.9271 |
| 41 | 1.0026 | 0.5875 | 0.7073 | 0.2033 | 0.0179 | 0.0742 | 0.9476 | 0.9251 | 0.9362 |
| 42 | 0.9567 | 0.5724 | 0.6677 | 0.1992 | 0.0164 | 0.0734 | 0.9468 | 0.9332 | 0.9400 |
| 43 | 0.8747 | 0.5709 | 0.5794 | 0.1980 | 0.0159 | 0.0814 | 0.9557 | 0.9432 | 0.9494 |
| 44 | 1.0310 | 0.5497 | 0.7392 | 0.1956 | 0.0254 | 0.0709 | 0.9589 | 0.9313 | 0.9449 |
| 45 | 0.9526 | 0.5580 | 0.6598 | 0.1982 | 0.0185 | 0.0762 | 0.9401 | 0.9413 | 0.9407 |
| 46 | 0.8753 | 0.5548 | 0.5940 | 0.1939 | 0.0176 | 0.0698 | 0.9468 | 0.9438 | 0.9453 |
| 47 | 0.9328 | 0.5735 | 0.6493 | 0.1953 | 0.0163 | 0.0720 | 0.9534 | 0.9320 | 0.9426 |
| 48 | 0.9019 | 0.5605 | 0.6071 | 0.2002 | 0.0182 | 0.0765 | 0.9496 | 0.9413 | 0.9455 |
| 49 | 0.8335 | 0.5637 | 0.5459 | 0.1918 | 0.0175 | 0.0783 | 0.9588 | 0.9307 | 0.9446 |
| 50 | 0.9043 | 0.5617 | 0.6179 | 0.1933 | 0.0154 | 0.0776 | 0.9597 | 0.9370 | 0.9482 |
|