English
BPMN_Detection / README.md
BenjiELCA's picture
Update README.md
dcdef80 verified
|
raw
history blame
2.91 kB

license: apache-2.0 metrics:

  • precision
  • recall
  • f1
  • accuracy

BPMN element detection

The dataset contains 15 target labels:

  • AGENT

    • pool
    • lane
  • TASK

    • task
    • subProcess
  • TASK_INFO

    • dataObject
    • dataStore
  • PROCESS_INFO

    • background
  • CONDITION

    • exclusiveGateway
    • parallelGateway
    • eventBasedGateway
  • EVENT

    • event
    • messageEvent
    • timerEvent
  • FLOW

    • sequenceFlow
    • dataAssociation
    • messageFlow

It achieves the following results on the evaluation set:

  • Loss:
  • Precision:
  • Recall:
  • F1:
  • Accuracy:

Model description

This project aims to detect Business Process Model and Notation (BPMN) elements from hand-drawn diagrams using a machine learning model. The model is trained to recognize various BPMN elements such as tasks, events, gateways, and connectors from images of hand-drawn diagrams.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate:
  • train_batch_size:
  • eval_batch_size:
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs:

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
2.0586 1.0 10 1.5601 0.1278 0.1559 0.1404 0.4750
1.3702 2.0 20 1.0113 0.3947 0.5645 0.4646 0.7150
0.8872 3.0 30 0.6645 0.5224 0.6882 0.5940 0.8051
0.5341 4.0 40 0.4741 0.6754 0.8280 0.7440 0.8541
0.3221 5.0 50 0.3831 0.7523 0.8817 0.8119 0.8883
0.2168 6.0 60 0.3297 0.7731 0.8978 0.8308 0.9079
0.1565 7.0 70 0.2998 0.8195 0.9032 0.8593 0.9128
0.1227 8.0 80 0.3227 0.8038 0.9032 0.8506 0.9099
0.0957 9.0 90 0.2840 0.8431 0.9247 0.8821 0.9216
0.077 10.0 100 0.2914 0.8252 0.9140 0.8673 0.9216
0.0691 11.0 110 0.2850 0.8431 0.9247 0.8821 0.9285
0.059 12.0 120 0.2886 0.8564 0.9301 0.8918 0.9285
0.0528 13.0 130 0.2838 0.8564 0.9301 0.8918 0.9305
0.0488 14.0 140 0.2881 0.8515 0.9247 0.8866 0.9305
0.049 15.0 150 0.2909 0.8557 0.9247 0.8889 0.9285