|
import spaces |
|
import argparse |
|
import os |
|
import time |
|
from os import path |
|
from safetensors.torch import load_file |
|
from huggingface_hub import hf_hub_download |
|
|
|
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") |
|
os.environ["TRANSFORMERS_CACHE"] = cache_path |
|
os.environ["HF_HUB_CACHE"] = cache_path |
|
os.environ["HF_HOME"] = cache_path |
|
|
|
import gradio as gr |
|
import torch |
|
from diffusers import FluxPipeline |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
class timer: |
|
def __init__(self, method_name="timed process"): |
|
self.method = method_name |
|
def __enter__(self): |
|
self.start = time.time() |
|
print(f"{self.method} starts") |
|
def __exit__(self, exc_type, exc_val, exc_tb): |
|
end = time.time() |
|
print(f"{self.method} took {str(round(end - self.start, 2))}s") |
|
|
|
if not path.exists(cache_path): |
|
os.makedirs(cache_path, exist_ok=True) |
|
|
|
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) |
|
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) |
|
pipe.fuse_lora(lora_scale=0.125) |
|
pipe.to(device="cuda", dtype=torch.bfloat16) |
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown( |
|
""" |
|
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> |
|
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Hyper-FLUX-8steps-LoRA</h1> |
|
<p style="font-size: 1rem; margin-bottom: 1.5rem;">AutoML team from ByteDance</p> |
|
</div> |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
with gr.Group(): |
|
prompt = gr.Textbox( |
|
label="Your Image Description", |
|
placeholder="E.g., A serene landscape with mountains and a lake at sunset", |
|
lines=3 |
|
) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
with gr.Group(): |
|
with gr.Row(): |
|
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024) |
|
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024) |
|
|
|
with gr.Row(): |
|
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8) |
|
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5) |
|
|
|
seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0) |
|
|
|
generate_btn = gr.Button("Generate Image", variant="primary", scale=1) |
|
|
|
with gr.Column(scale=4): |
|
output = gr.Image(label="Your Generated Image") |
|
|
|
gr.Markdown( |
|
""" |
|
<div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;"> |
|
<h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2> |
|
<ol style="padding-left: 1.5rem;"> |
|
<li>Enter a detailed description of the image you want to create.</li> |
|
<li>Adjust advanced settings if desired (tap to expand).</li> |
|
<li>Tap "Generate Image" and wait for your creation!</li> |
|
</ol> |
|
<p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p> |
|
</div> |
|
""" |
|
) |
|
|
|
@spaces.GPU |
|
def process_image(height, width, steps, scales, prompt, seed): |
|
global pipe |
|
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): |
|
return pipe( |
|
prompt=[prompt], |
|
generator=torch.Generator().manual_seed(int(seed)), |
|
num_inference_steps=int(steps), |
|
guidance_scale=float(scales), |
|
height=int(height), |
|
width=int(width), |
|
max_sequence_length=256 |
|
).images[0] |
|
|
|
generate_btn.click( |
|
process_image, |
|
inputs=[height, width, steps, scales, prompt, seed], |
|
outputs=output |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|