vit-fire-detection / README.md
EdBianchi's picture
Librarian Bot: Add base_model information to model (#9)
9eb1ec5
|
raw
history blame
2.15 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
base_model: google/vit-base-patch16-224-in21k
model-index:
  - name: vit-fire-detection
    results: []

vit-fire-detection

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0126
  • Precision: 0.9960
  • Recall: 0.9960

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall
0.1018 1.0 190 0.0375 0.9934 0.9934
0.0484 2.0 380 0.0167 0.9961 0.9960
0.0357 3.0 570 0.0253 0.9948 0.9947
0.0133 4.0 760 0.0198 0.9961 0.9960
0.012 5.0 950 0.0203 0.9947 0.9947
0.0139 6.0 1140 0.0204 0.9947 0.9947
0.0076 7.0 1330 0.0175 0.9961 0.9960
0.0098 8.0 1520 0.0115 0.9974 0.9974
0.0062 9.0 1710 0.0133 0.9960 0.9960
0.0012 10.0 1900 0.0126 0.9960 0.9960

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.14.0.dev20221111
  • Datasets 2.8.0
  • Tokenizers 0.12.1