JeongwonChoi's picture
Update README.md
e40181a verified
metadata
tags:
  - text-generation
license: cc-by-nc-sa-4.0
language:
  - ko
base_model: LDCC/LDCC-SOLAR-10.7B
pipeline_tag: text-generation
datasets:
  - Edentns/data_go_kr-PublicDoc
  - Edentns/aihub-TL_unanswerable_output
  - Edentns/aihub-TL_span_extraction_how_output
  - Edentns/aihub-TL_multiple_choice_output
  - Edentns/aihub-TL_text_entailment_output
  - jojo0217/korean_rlhf_dataset
  - kyujinpy/KOR-OpenOrca-Platypus-v3
  - beomi/KoAlpaca-v1.1a
  - HumanF-MarkrAI/WIKI_QA_Near_dedup

DataVortexS-10.7B-v0.4

DataVortex

Our Team

Research & Engineering Product Management
Kwangseok Yang Seunghyun Choi
Jeongwon Choi Hyoseok Choi

Model Details

Base Model

LDCC/LDCC-SOLAR-10.7B

Trained On

  • OS: Ubuntu 20.04
  • GPU: H100 80GB 2ea
  • transformers: v4.36.2

Dataset

Instruction format

It follows Alpaca format.

E.g.

text = """\
당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€.

### Instruction:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?

### Response:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€.

### Instruction:
μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?
"""

Model Benchmark

Ko LM Eval Harness

Task 0-shot 5-shot 10-shot 50-shot
kobest_boolq 0.389066 0.912924 0.912808 0.906428
kobest_copa 0.744865 0.747742 0.768856 0.785896
kobest_hellaswag 0.455793 0.443909 0.465783 0.472771
kobest_sentineg 0.584156 0.947082 0.962216 0.954657
Average 0.54347 0.76291425 0.77741575 0.779938

Ko-LLM-Leaderboard

Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
54.15 49.4 59.7 54.63 47.5 59.5

Implementation Code

This model contains the chat_template instruction format.
You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-v0.4")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-v0.4")

messages = [
    {"role": "system", "content": "당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?"},
    {"role": "assistant", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

License

The model is licensed under the cc-by-nc-sa-4.0 license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.