metadata
tags:
- text-generation
license: cc-by-nc-sa-4.0
language:
- ko
base_model: LDCC/LDCC-SOLAR-10.7B
pipeline_tag: text-generation
datasets:
- Edentns/data_go_kr-PublicDoc
- Edentns/aihub-TL_unanswerable_output
- Edentns/aihub-TL_span_extraction_how_output
- Edentns/aihub-TL_multiple_choice_output
- Edentns/aihub-TL_text_entailment_output
- jojo0217/korean_rlhf_dataset
- kyujinpy/KOR-OpenOrca-Platypus-v3
- beomi/KoAlpaca-v1.1a
- HumanF-MarkrAI/WIKI_QA_Near_dedup
DataVortexS-10.7B-v0.4
Our Team
Research & Engineering | Product Management |
---|---|
Kwangseok Yang | Seunghyun Choi |
Jeongwon Choi | Hyoseok Choi |
Model Details
Base Model
Trained On
- OS: Ubuntu 20.04
- GPU: H100 80GB 2ea
- transformers: v4.36.2
Dataset
- Edentns/data_go_kr-PublicDoc - private
- Edentns/aihub-TL_unanswerable_output - private
- Edentns/aihub-TL_span_extraction_how_output - private
- Edentns/aihub-TL_multiple_choice_output - private
- Edentns/aihub-TL_text_entailment_output - private
- jojo0217/korean_rlhf_dataset
- kyujinpy/KOR-OpenOrca-Platypus-v3
- beomi/KoAlpaca-v1.1a
- HumanF-MarkrAI/WIKI_QA_Near_dedup
Instruction format
It follows Alpaca format.
E.g.
text = """\
λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€.
### Instruction:
λνλ―Όκ΅μ μλλ μ΄λμΌ?
### Response:
λνλ―Όκ΅μ μλλ μμΈμ
λλ€.
### Instruction:
μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?
"""
Model Benchmark
Ko LM Eval Harness
Task | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
kobest_boolq | 0.389066 | 0.912924 | 0.912808 | 0.906428 |
kobest_copa | 0.744865 | 0.747742 | 0.768856 | 0.785896 |
kobest_hellaswag | 0.455793 | 0.443909 | 0.465783 | 0.472771 |
kobest_sentineg | 0.584156 | 0.947082 | 0.962216 | 0.954657 |
Average | 0.54347 | 0.76291425 | 0.77741575 | 0.779938 |
Ko-LLM-Leaderboard
Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|
54.15 | 49.4 | 59.7 | 54.63 | 47.5 | 59.5 |
Implementation Code
This model contains the chat_template instruction format.
You can use the code below.
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-v0.4")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-v0.4")
messages = [
{"role": "system", "content": "λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€."},
{"role": "user", "content": "λνλ―Όκ΅μ μλλ μ΄λμΌ?"},
{"role": "assistant", "content": "λνλ―Όκ΅μ μλλ μμΈμ
λλ€."},
{"role": "user", "content": "μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
License
The model is licensed under the cc-by-nc-sa-4.0 license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.