|
--- |
|
language: pt |
|
datasets: |
|
- Common Voice |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- speech |
|
- wav2vec2 |
|
- pt |
|
- portuguese-speech-corpus |
|
- automatic-speech-recognition |
|
- speech |
|
- PyTorch |
|
license: apache-2.0 |
|
model-index: |
|
- name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset in Portuguese |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
metrics: |
|
- name: Test Common Voice 7.0 WER |
|
type: wer |
|
value: 63.90 |
|
--- |
|
|
|
# Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Portuguese |
|
|
|
[Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Portuguese using a single-speaker dataset (TTS-Portuguese Corpus). |
|
|
|
|
|
|
|
# Use this model |
|
|
|
```python |
|
|
|
from transformers import AutoTokenizer, Wav2Vec2ForCTC |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-portuguese") |
|
|
|
model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-portuguese") |
|
``` |
|
# Results |
|
For the results check the [paper](https://arxiv.org/abs/2204.00618) |
|
|
|
# Example test with Common Voice Dataset |
|
|
|
|
|
```python |
|
dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-7.0-2021-07-21") |
|
|
|
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) |
|
|
|
def map_to_array(batch): |
|
speech, _ = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() |
|
batch["sampling_rate"] = resampler.new_freq |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") |
|
return batch |
|
``` |
|
|
|
```python |
|
ds = dataset.map(map_to_array) |
|
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) |
|
print(wer.compute(predictions=result["predicted"], references=result["target"])) |
|
``` |
|
|
|
|