metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
model-index:
- name: victorious-moose-736
results: []
victorious-moose-736
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1689
- Hamming Loss: 0.0619
- Zero One Loss: 0.4450
- Jaccard Score: 0.3857
- Hamming Loss Optimised: 0.0592
- Hamming Loss Threshold: 0.7299
- Zero One Loss Optimised: 0.4387
- Zero One Loss Threshold: 0.4119
- Jaccard Score Optimised: 0.3464
- Jaccard Score Threshold: 0.2462
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.115467719563917e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 2024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.8101446041573426,0.9056914031952074) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 100 | 0.1830 | 0.0644 | 0.5162 | 0.4740 | 0.0643 | 0.4982 | 0.4975 | 0.3276 | 0.3889 | 0.2962 |
No log | 2.0 | 200 | 0.1643 | 0.062 | 0.4625 | 0.3920 | 0.0597 | 0.6455 | 0.4587 | 0.4816 | 0.3518 | 0.2755 |
No log | 3.0 | 300 | 0.1678 | 0.0636 | 0.4550 | 0.3934 | 0.0595 | 0.7017 | 0.4425 | 0.3683 | 0.3441 | 0.2888 |
No log | 4.0 | 400 | 0.1689 | 0.0619 | 0.4450 | 0.3857 | 0.0592 | 0.7299 | 0.4387 | 0.4119 | 0.3464 | 0.2462 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0