|
--- |
|
language: |
|
- ja |
|
tags: |
|
- causal-lm |
|
- not-for-all-audiences |
|
- nsfw |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Sapphire 7B |
|
|
|
![plot.png](plot.png) |
|
|
|
- word score: frequency of erotic words |
|
- average complexity: it measures the diversity of the model's output per sentence. It it's low, it means the model tends to be repetitive and/or monotonous. |
|
- contextual score: how well the model accords with the given context on a whole |
|
- average response length: verbatim |
|
|
|
result sample: [Sapphire7B.md](Sapphire7B.md) |
|
|
|
## Model Description |
|
|
|
This is a 7B-parameter decoder-only Japanese language model fine-tuned on novel datasets, built on top of the base model Japanese Stable LM Base Gamma 7B. [Japanese Stable LM Instruct Gamma 7B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-gamma-7b) |
|
|
|
## Usage |
|
|
|
Ensure you are using Transformers 4.34.0 or newer. |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Elizezen/Sapphire-7B") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"Elizezen/Sapphire-7B", |
|
torch_dtype="auto", |
|
) |
|
model.eval() |
|
|
|
if torch.cuda.is_available(): |
|
model = model.to("cuda") |
|
|
|
input_ids = tokenizer.encode( |
|
"吾輩は猫である。名前はまだない",, |
|
add_special_tokens=True, |
|
return_tensors="pt" |
|
) |
|
|
|
tokens = model.generate( |
|
input_ids.to(device=model.device), |
|
max_new_tokens=512, |
|
temperature=1, |
|
top_p=0.95, |
|
do_sample=True, |
|
) |
|
|
|
out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip() |
|
print(out) |
|
``` |
|
|
|
### Intended Use |
|
|
|
The model is mainly intended to be used for generating novels. It may not be so capable with instruction-based responses. Good at both sfw ans nsfw. |