Sapphire-7B / README.md
Elizezen's picture
Update README.md
ef96782 verified
---
language:
- ja
tags:
- causal-lm
- not-for-all-audiences
- nsfw
pipeline_tag: text-generation
---
# Sapphire 7B
![plot.png](plot.png)
- word score: frequency of erotic words
- average complexity: it measures the diversity of the model's output per sentence. It it's low, it means the model tends to be repetitive and/or monotonous.
- contextual score: how well the model accords with the given context on a whole
- average response length: verbatim
result sample: [Sapphire7B.md](Sapphire7B.md)
## Model Description
This is a 7B-parameter decoder-only Japanese language model fine-tuned on novel datasets, built on top of the base model Japanese Stable LM Base Gamma 7B. [Japanese Stable LM Instruct Gamma 7B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-gamma-7b)
## Usage
Ensure you are using Transformers 4.34.0 or newer.
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Elizezen/Sapphire-7B")
model = AutoModelForCausalLM.from_pretrained(
"Elizezen/Sapphire-7B",
torch_dtype="auto",
)
model.eval()
if torch.cuda.is_available():
model = model.to("cuda")
input_ids = tokenizer.encode(
"吾輩は猫である。名前はまだない",,
add_special_tokens=True,
return_tensors="pt"
)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=512,
temperature=1,
top_p=0.95,
do_sample=True,
)
out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip()
print(out)
```
### Intended Use
The model is mainly intended to be used for generating novels. It may not be so capable with instruction-based responses. Good at both sfw ans nsfw.