Text Generation
GGUF
Merge
Inference Endpoints
imatrix
conversational
Epiculous's picture
Update README.md
596ce1c verified
metadata
license: apache-2.0
datasets:
  - Epiculous/SynthRP-Gens-v1-Filtered-n-Cleaned
  - Epiculous/Synthstruct-Gens-v1-Filtered-n-Cleaned
language:
  - en
  - fr
  - de
  - es
  - it
  - pt
  - ru
  - zh
  - ja
pipeline_tag: text-generation
tags:
  - merge

image/png

Now for something a bit different, Violet_Twilight! This model is a SLERP merge of Azure_Dusk and Crimson_Dawn!

Quants!

full / exl2 / gguf

Prompting

Violet_Twilight's models were trained with the Mistral Instruct template, therefore it should be prompted in a similar way that you would prompt any other mistral based model.

"<s>[INST] Prompt goes here [/INST]<\s>"

Context and Instruct

Magnum-123B-Context.json
Magnum-123B-Instruct.json
*** NOTE ***
There have been reports of the quantized model misbehaving with the mistral prompt, if you are seeing issues it may be worth trying ChatML Context and Instruct templates. If you are using GGUF I strongly advise using ChatML, for some reason that quantization performs better using ChatML.

Current Top Sampler Settings

Violet_Twilight-Nitral-Special- Considered the best settings!
Crimson_Dawn-Nitral-Special
Crimson_Dawn-Magnum-Style

Tokenizer

If you are using SillyTavern, please set the tokenizer to API (WebUI/ koboldcpp)

Merging

The following config was used to merge Azure Dusk and Crimson Dawn

slices:
  - sources:
      - model: Epiculous/Azure_Dusk-v0.1
        layer_range: [0, 40]
      - model: Epiculous/Crimson_Dawn-V0.1
        layer_range: [0, 40]
merge_method: slerp
base_model: Epiculous/Azure_Dusk-v0.1
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5 # fallback for rest of tensors
dtype: bfloat16