PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.
Usage (with Stable-baselines3)
from typing import Callable
def linear_schedule(initial_value: float) -> Callable[[float], float]:
def func(progress_remaining: float) -> float:
return progress_remaining * initial_value
return func
model = PPO(policy="MlpPolicy", env=env, verbose=1, n_epochs=10, learning_rate=linear_schedule(0.005), n_steps=1500)
- Downloads last month
- 0
Evaluation results
- mean_reward on LunarLander-v2self-reported282.88 +/- 14.89