File size: 2,671 Bytes
c83ec8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: bsd-3-clause
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: trainer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trainer
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3684
- Accuracy: 0.9275
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 4.2624 | 2.0 | 50 | 0.3928 | 0.88 |
| 0.9069 | 4.0 | 100 | 0.3259 | 0.9025 |
| 0.9069 | 6.0 | 150 | 0.2775 | 0.93 |
| 0.0567 | 8.0 | 200 | 0.3220 | 0.9075 |
| 0.0567 | 10.0 | 250 | 0.3196 | 0.9075 |
| 0.0109 | 12.0 | 300 | 0.3644 | 0.9175 |
| 0.0109 | 14.0 | 350 | 0.3501 | 0.93 |
| 0.0138 | 16.0 | 400 | 0.3569 | 0.9275 |
| 0.0138 | 18.0 | 450 | 0.3700 | 0.9225 |
| 0.0006 | 20.0 | 500 | 0.3662 | 0.925 |
| 0.0006 | 22.0 | 550 | 0.3669 | 0.925 |
| 0.0002 | 24.0 | 600 | 0.3673 | 0.925 |
| 0.0002 | 26.0 | 650 | 0.3677 | 0.925 |
| 0.0002 | 28.0 | 700 | 0.3679 | 0.9275 |
| 0.0002 | 30.0 | 750 | 0.3680 | 0.9275 |
| 0.0002 | 32.0 | 800 | 0.3681 | 0.9275 |
| 0.0002 | 34.0 | 850 | 0.3684 | 0.9275 |
| 0.0002 | 36.0 | 900 | 0.3683 | 0.9275 |
| 0.0002 | 38.0 | 950 | 0.3684 | 0.9275 |
| 0.0002 | 40.0 | 1000 | 0.3684 | 0.9275 |
### Framework versions
- Transformers 4.27.1
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|