Image Segmentation
medical
biology
File size: 5,082 Bytes
13850eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pathlib import Path\n",
    "\n",
    "import torch\n",
    "\n",
    "from rtnls_inference import (\n",
    "    HeatmapRegressionEnsemble,\n",
    "    SegmentationEnsemble,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Segmentation of preprocessed images\n",
    "\n",
    "Here we segment images preprocessed using 0_preprocess.ipynb\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "ds_path = Path(\"../samples/fundus\")\n",
    "\n",
    "# input folders. these are the folders where we stored the preprocessed images\n",
    "rgb_path = ds_path / \"rgb\"\n",
    "ce_path = ds_path / \"ce\"\n",
    "\n",
    "# these are the output folders for:\n",
    "av_path = ds_path / \"av\"  # artery-vein segmentations\n",
    "discs_path = ds_path / \"discs\"  # optic disc segmentations\n",
    "overlays_path = ds_path / \"overlays\"  # optional overlay visualizations\n",
    "\n",
    "device = torch.device(\"cuda:0\")  # device to use for inference"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "rgb_paths = sorted(list(rgb_path.glob(\"*.png\")))\n",
    "ce_paths = sorted(list(ce_path.glob(\"*.png\")))\n",
    "paired_paths = list(zip(rgb_paths, ce_paths))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "paired_paths[0]  # important to make sure that the paths are paired correctly"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Artery-vein segmentation\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "av_ensemble = SegmentationEnsemble.from_huggingface('Eyened/vascx:artery_vein/av_july24.pt').to(device)\n",
    "\n",
    "av_ensemble.predict_preprocessed(paired_paths, dest_path=av_path, num_workers=2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Disc segmentation\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "disc_ensemble = SegmentationEnsemble.from_huggingface('Eyened/vascx:disc/disc_july24.pt').to(device)\n",
    "disc_ensemble.predict_preprocessed(paired_paths, dest_path=discs_path, num_workers=2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Fovea detection\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fovea_ensemble = HeatmapRegressionEnsemble.from_huggingface('Eyened/vascx:fovea/fovea_july24.pt').to(device)\n",
    "# note: this model does not use contrast enhanced images\n",
    "df = fovea_ensemble.predict_preprocessed(paired_paths, num_workers=2)\n",
    "df.columns = [\"mean_x\", \"mean_y\"]\n",
    "df.to_csv(ds_path / \"fovea.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Plotting the retinas (optional)\n",
    "\n",
    "This will only work if you ran all the models and stored the outputs using the same folder/file names as above\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from vascx.fundus.loader import RetinaLoader\n",
    "\n",
    "from rtnls_enface.utils.plotting import plot_gridfns\n",
    "\n",
    "loader = RetinaLoader.from_folder(ds_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "plot_gridfns([ret.plot for ret in loader[:6]])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Storing visualizations (optional)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "if not overlays_path.exists():\n",
    "    overlays_path.mkdir()\n",
    "for ret in loader:\n",
    "    fig, _ = ret.plot()\n",
    "    fig.savefig(overlays_path / f\"{ret.id}.png\", bbox_inches=\"tight\", pad_inches=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "retinalysis",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}