File size: 5,082 Bytes
13850eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"import torch\n",
"\n",
"from rtnls_inference import (\n",
" HeatmapRegressionEnsemble,\n",
" SegmentationEnsemble,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Segmentation of preprocessed images\n",
"\n",
"Here we segment images preprocessed using 0_preprocess.ipynb\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"ds_path = Path(\"../samples/fundus\")\n",
"\n",
"# input folders. these are the folders where we stored the preprocessed images\n",
"rgb_path = ds_path / \"rgb\"\n",
"ce_path = ds_path / \"ce\"\n",
"\n",
"# these are the output folders for:\n",
"av_path = ds_path / \"av\" # artery-vein segmentations\n",
"discs_path = ds_path / \"discs\" # optic disc segmentations\n",
"overlays_path = ds_path / \"overlays\" # optional overlay visualizations\n",
"\n",
"device = torch.device(\"cuda:0\") # device to use for inference"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"rgb_paths = sorted(list(rgb_path.glob(\"*.png\")))\n",
"ce_paths = sorted(list(ce_path.glob(\"*.png\")))\n",
"paired_paths = list(zip(rgb_paths, ce_paths))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"paired_paths[0] # important to make sure that the paths are paired correctly"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Artery-vein segmentation\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"av_ensemble = SegmentationEnsemble.from_huggingface('Eyened/vascx:artery_vein/av_july24.pt').to(device)\n",
"\n",
"av_ensemble.predict_preprocessed(paired_paths, dest_path=av_path, num_workers=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Disc segmentation\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"disc_ensemble = SegmentationEnsemble.from_huggingface('Eyened/vascx:disc/disc_july24.pt').to(device)\n",
"disc_ensemble.predict_preprocessed(paired_paths, dest_path=discs_path, num_workers=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fovea detection\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fovea_ensemble = HeatmapRegressionEnsemble.from_huggingface('Eyened/vascx:fovea/fovea_july24.pt').to(device)\n",
"# note: this model does not use contrast enhanced images\n",
"df = fovea_ensemble.predict_preprocessed(paired_paths, num_workers=2)\n",
"df.columns = [\"mean_x\", \"mean_y\"]\n",
"df.to_csv(ds_path / \"fovea.csv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plotting the retinas (optional)\n",
"\n",
"This will only work if you ran all the models and stored the outputs using the same folder/file names as above\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from vascx.fundus.loader import RetinaLoader\n",
"\n",
"from rtnls_enface.utils.plotting import plot_gridfns\n",
"\n",
"loader = RetinaLoader.from_folder(ds_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_gridfns([ret.plot for ret in loader[:6]])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Storing visualizations (optional)\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"if not overlays_path.exists():\n",
" overlays_path.mkdir()\n",
"for ret in loader:\n",
" fig, _ = ret.plot()\n",
" fig.savefig(overlays_path / f\"{ret.id}.png\", bbox_inches=\"tight\", pad_inches=0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "retinalysis",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|