EzraWilliam's picture
End of training
a523242 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - xtreme_s
metrics:
  - wer
model-index:
  - name: wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod5
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: xtreme_s
          type: xtreme_s
          config: fleurs.id_id
          split: test
          args: fleurs.id_id
        metrics:
          - name: Wer
            type: wer
            value: 0.5365963179164795

wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod5

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the xtreme_s dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9790
  • Wer: 0.5366

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 600
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.9955 9.23 300 2.8534 1.0
1.7522 18.46 600 0.7939 0.7079
0.3374 27.69 900 0.8635 0.6423
0.1617 36.92 1200 0.9916 0.5929
0.1102 46.15 1500 0.9796 0.5648
0.0815 55.38 1800 0.9790 0.5366

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1