EzraWilliam's picture
Upload tokenizer
5fc6590 verified
|
raw
history blame
2.16 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
base_model: facebook/wav2vec2-large-xlsr-53
datasets:
  - xtreme_s
metrics:
  - wer
model-index:
  - name: wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod8
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: xtreme_s
          type: xtreme_s
          config: fleurs.id_id
          split: test
          args: fleurs.id_id
        metrics:
          - type: wer
            value: 0.42321508756174225
            name: Wer

wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod8

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the xtreme_s dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8564
  • Wer: 0.4232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 600
  • num_epochs: 180
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.801 30.77 300 2.8357 1.0
1.041 61.54 600 0.8673 0.5433
0.1141 92.31 900 0.8976 0.4801
0.0568 123.08 1200 0.8556 0.4427
0.035 153.85 1500 0.8564 0.4232

Framework versions

  • Transformers 4.39.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2