metadata
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/wav2vec2-large-xlsr-53
datasets:
- xtreme_s
metrics:
- wer
model-index:
- name: wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod8
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: xtreme_s
type: xtreme_s
config: fleurs.id_id
split: test
args: fleurs.id_id
metrics:
- type: wer
value: 0.42321508756174225
name: Wer
wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod8
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the xtreme_s dataset. It achieves the following results on the evaluation set:
- Loss: 0.8564
- Wer: 0.4232
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- num_epochs: 180
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.801 | 30.77 | 300 | 2.8357 | 1.0 |
1.041 | 61.54 | 600 | 0.8673 | 0.5433 |
0.1141 | 92.31 | 900 | 0.8976 | 0.4801 |
0.0568 | 123.08 | 1200 | 0.8556 | 0.4427 |
0.035 | 153.85 | 1500 | 0.8564 | 0.4232 |
Framework versions
- Transformers 4.39.0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2