wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5725
  • Wer: 0.3413

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.508 1.0 500 1.9315 0.9962
0.8832 2.01 1000 0.5552 0.5191
0.4381 3.01 1500 0.4451 0.4574
0.2983 4.02 2000 0.4096 0.4265
0.2232 5.02 2500 0.4280 0.4083
0.1811 6.02 3000 0.4307 0.3942
0.1548 7.03 3500 0.4453 0.3889
0.1367 8.03 4000 0.5043 0.4138
0.1238 9.04 4500 0.4530 0.3807
0.1072 10.04 5000 0.4435 0.3660
0.0978 11.04 5500 0.4739 0.3676
0.0887 12.05 6000 0.5052 0.3761
0.0813 13.05 6500 0.5098 0.3619
0.0741 14.06 7000 0.4666 0.3602
0.0654 15.06 7500 0.5642 0.3657
0.0589 16.06 8000 0.5489 0.3638
0.0559 17.07 8500 0.5260 0.3598
0.0562 18.07 9000 0.5250 0.3640
0.0448 19.08 9500 0.5215 0.3569
0.0436 20.08 10000 0.5117 0.3560
0.0412 21.08 10500 0.4910 0.3570
0.0336 22.09 11000 0.5221 0.3524
0.031 23.09 11500 0.5278 0.3480
0.0339 24.1 12000 0.5353 0.3486
0.0278 25.1 12500 0.5342 0.3462
0.0251 26.1 13000 0.5399 0.3439
0.0242 27.11 13500 0.5626 0.3431
0.0214 28.11 14000 0.5749 0.3408
0.0216 29.12 14500 0.5725 0.3413

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.12.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.