Fingu-M-v1 / README.md
FINGU-AI's picture
Upload folder using huggingface_hub
2a0cf32 verified
metadata
base_model: dunzhang/stella_en_1.5B_v5
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:693000
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Paracrystalline materials are defined as having short and medium range
      ordering in their lattice (similar to the liquid crystal phases) but
      lacking crystal-like long-range ordering at least in one direction.
    sentences:
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Paracrystalline
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Øystein Dahle
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Makis Belevonis
  - source_sentence: >-
      Hạ Trạch is a commune ( xã ) and village in Bố Trạch District , Quảng Bình
      Province , in Vietnam .   Category : Populated places in Quang Binh
      Province  Category : Communes of Quang Binh Province
    sentences:
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: The Taill of how this forsaid Tod maid his Confessioun to Freir
        Wolf Waitskaith
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Hạ Trạch
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Tadaxa
  - source_sentence: >-
      The Golden Mosque (سنهرى مسجد, Sunehri Masjid) is a mosque in Old Delhi.
      It is located outside the southwestern corner of Delhi Gate of the Red
      Fort, opposite the Netaji Subhash Park.
    sentences:
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Algorithm
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Golden Mosque (Red Fort)
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Parnaso Español
  - source_sentence: >-
      Unibank, S.A. is one of Haiti's two largest private commercial banks. The
      bank was founded in 1993 by a group of Haitian investors and is the main
      company of "Groupe Financier National (GFN)". It opened its first office
      in July 1993 in downtown Port-au-Prince and has 50 branches throughout the
      country as of the end of 2016.
    sentences:
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Sky TG24
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Ghomijeh
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Unibank (Haiti)
  - source_sentence: >-
      The Tchaikovsky Symphony Orchestra is a Russian classical music orchestra
      established in 1930. It was founded as the Moscow Radio Symphony
      Orchestra, and served as the official symphony for the Soviet All-Union
      Radio network. Following the dissolution of the, Soviet Union in 1991, the
      orchestra was renamed in 1993 by the Russian Ministry of Culture in
      recognition of the central role the music of Tchaikovsky plays in its
      repertoire. The current music director is Vladimir Fedoseyev, who has been
      in that position since 1974.
    sentences:
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Harald J.W. Mueller-Kirsten
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Sierra del Lacandón
      - >-
        Instruct: Given a web search query, retrieve relevant passages that
        answer the query.

        Query: Tchaikovsky Symphony Orchestra
model-index:
  - name: SentenceTransformer based on dunzhang/stella_en_1.5B_v5
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy@1
            value: 0.9387205387205387
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9646464646464646
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9734006734006734
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9818181818181818
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.9387205387205387
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32154882154882153
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19468013468013465
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09818181818181818
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.9387205387205387
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9646464646464646
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9734006734006734
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9818181818181818
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9604189096111768
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9535509860509859
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9540030317604424
            name: Cosine Map@100
          - type: cosine_accuracy@1
            value: 0.938047138047138
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9643097643097643
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9734006734006734
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9801346801346801
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.938047138047138
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3214365881032548
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19468013468013465
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09801346801346798
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.938047138047138
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9643097643097643
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9734006734006734
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9801346801346801
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9595228125760605
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9528592806370585
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9534396603676074
            name: Cosine Map@100
          - type: cosine_accuracy@1
            value: 0.9387205387205387
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9622895622895623
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9703703703703703
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9787878787878788
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.9387205387205387
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3207631874298541
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19407407407407404
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09787878787878787
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.9387205387205387
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9622895622895623
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9703703703703703
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9787878787878788
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9588799906525647
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9525124258457593
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9530933506069861
            name: Cosine Map@100

SentenceTransformer based on dunzhang/stella_en_1.5B_v5

This is a sentence-transformers model finetuned from dunzhang/stella_en_1.5B_v5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: dunzhang/stella_en_1.5B_v5
  • Maximum Sequence Length: 8096 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8096, 'do_lower_case': False}) with Transformer model: Qwen2Model 
  (1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 1536, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'The Tchaikovsky Symphony Orchestra is a Russian classical music orchestra established in 1930. It was founded as the Moscow Radio Symphony Orchestra, and served as the official symphony for the Soviet All-Union Radio network. Following the dissolution of the, Soviet Union in 1991, the orchestra was renamed in 1993 by the Russian Ministry of Culture in recognition of the central role the music of Tchaikovsky plays in its repertoire. The current music director is Vladimir Fedoseyev, who has been in that position since 1974.',
    'Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: Tchaikovsky Symphony Orchestra',
    'Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: Sierra del Lacandón',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9387
cosine_accuracy@3 0.9646
cosine_accuracy@5 0.9734
cosine_accuracy@10 0.9818
cosine_precision@1 0.9387
cosine_precision@3 0.3215
cosine_precision@5 0.1947
cosine_precision@10 0.0982
cosine_recall@1 0.9387
cosine_recall@3 0.9646
cosine_recall@5 0.9734
cosine_recall@10 0.9818
cosine_ndcg@10 0.9604
cosine_mrr@10 0.9536
cosine_map@100 0.954

Information Retrieval

Metric Value
cosine_accuracy@1 0.938
cosine_accuracy@3 0.9643
cosine_accuracy@5 0.9734
cosine_accuracy@10 0.9801
cosine_precision@1 0.938
cosine_precision@3 0.3214
cosine_precision@5 0.1947
cosine_precision@10 0.098
cosine_recall@1 0.938
cosine_recall@3 0.9643
cosine_recall@5 0.9734
cosine_recall@10 0.9801
cosine_ndcg@10 0.9595
cosine_mrr@10 0.9529
cosine_map@100 0.9534

Information Retrieval

Metric Value
cosine_accuracy@1 0.9387
cosine_accuracy@3 0.9623
cosine_accuracy@5 0.9704
cosine_accuracy@10 0.9788
cosine_precision@1 0.9387
cosine_precision@3 0.3208
cosine_precision@5 0.1941
cosine_precision@10 0.0979
cosine_recall@1 0.9387
cosine_recall@3 0.9623
cosine_recall@5 0.9704
cosine_recall@10 0.9788
cosine_ndcg@10 0.9589
cosine_mrr@10 0.9525
cosine_map@100 0.9531

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_eval_batch_size: 4
  • gradient_accumulation_steps: 4
  • learning_rate: 2e-05
  • max_steps: 1500
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • warmup_steps: 5
  • bf16: True
  • tf32: True
  • optim: adamw_torch_fused
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: {'use_reentrant': False}
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3.0
  • max_steps: 1500
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 5
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: {'use_reentrant': False}
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss cosine_map@100
0.0185 100 0.4835 0.0751 0.9138
0.0369 200 0.0646 0.0590 0.9384
0.0554 300 0.0594 0.0519 0.9462
0.0739 400 0.0471 0.0483 0.9514
0.0924 500 0.0524 0.0455 0.9531

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.2.0+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}