librarian-bot's picture
Librarian Bot: Add base_model information to model
982903f
|
raw
history blame
2.29 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - wikiann
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: distilbert-base-german-cased
model-index:
  - name: distilbert-base-german-cased-finetuned-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: wikiann
          type: wikiann
          config: de
          split: validation
          args: de
        metrics:
          - type: precision
            value: 0.8400889939511924
            name: Precision
          - type: recall
            value: 0.8744391373570705
            name: Recall
          - type: f1
            value: 0.8569199673770433
            name: F1
          - type: accuracy
            value: 0.9548258089954094
            name: Accuracy

distilbert-base-german-cased-finetuned-ner

This model is a fine-tuned version of distilbert-base-german-cased on the wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1871
  • Precision: 0.8401
  • Recall: 0.8744
  • F1: 0.8569
  • Accuracy: 0.9548

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1785 1.0 2500 0.1728 0.8134 0.8414 0.8271 0.9490
0.1252 2.0 5000 0.1743 0.8434 0.8659 0.8545 0.9545
0.0867 3.0 7500 0.1871 0.8401 0.8744 0.8569 0.9548

Framework versions

  • Transformers 4.27.3
  • Pytorch 2.0.0+cu118
  • Datasets 2.10.1
  • Tokenizers 0.13.2