File size: 6,019 Bytes
ce151e2 8170ea6 ce151e2 8170ea6 ce151e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
---
language:
- multilingual
- en
- es
- fr
- de
- zh
- ru
- pt
- it
- ar
- ja
- id
- tr
- nl
- pl
- fa
- vi
- sv
- ko
- he
- ro
- no
- hi
- uk
- cs
- fi
- hu
- th
- da
- ca
- el
- bg
- sr
- ms
- bn
- hr
- sl
- az
- sk
- eo
- ta
- sh
- lt
- et
- ml
- la
- bs
- sq
- arz
- af
- ka
- mr
- eu
- tl
- ang
- gl
- nn
- ur
- kk
- be
- hy
- te
- lv
- mk
- als
- is
- wuu
- my
- sco
- mn
- ceb
- ast
- cy
- kn
- br
- an
- gu
- bar
- uz
- lb
- ne
- si
- war
- jv
- ga
- oc
- ku
- sw
- nds
- ckb
- ia
- yi
- fy
- scn
- gan
- tt
- am
license: cc-by-nc-4.0
---
# xlm-mlm-100-1280
# Table of Contents
1. [Model Details](#model-details)
2. [Uses](#uses)
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
4. [Training](#training)
5. [Evaluation](#evaluation)
6. [Environmental Impact](#environmental-impact)
7. [Citation](#citation)
8. [Model Card Authors](#model-card-authors)
9. [How To Get Started With the Model](#how-to-get-started-with-the-model)
# Model Details
xlm-mlm-100-1280 is the XLM model, which was proposed in [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau, trained on Wikipedia text in 100 languages. The model is a transformer pretrained using a masked language modeling (MLM) objective.
## Model Description
- **Developed by:** See [associated paper](https://arxiv.org/abs/1901.07291) and [GitHub Repo](https://github.com/facebookresearch/XLM)
- **Model type:** Language model
- **Language(s) (NLP):** 100 languages, see [GitHub Repo](https://github.com/facebookresearch/XLM#the-17-and-100-languages) for full list.
- **License:** CC-BY-NC-4.0
- **Related Models:** [xlm-mlm-17-1280](https://huggingface.co/xlm-mlm-17-1280)
- **Resources for more information:**
- [Associated paper](https://arxiv.org/abs/1901.07291)
- [GitHub Repo](https://github.com/facebookresearch/XLM#the-17-and-100-languages)
- [Hugging Face Multilingual Models for Inference docs](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings)
# Uses
## Direct Use
The model is a language model. The model can be used for masked language modeling.
## Downstream Use
To learn more about this task and potential downstream uses, see the Hugging Face [fill mask docs](https://huggingface.co/tasks/fill-mask) and the [Hugging Face Multilingual Models for Inference](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings) docs. Also see the [associated paper](https://arxiv.org/abs/1901.07291).
## Out-of-Scope Use
The model should not be used to intentionally create hostile or alienating environments for people.
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
## Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
# Training
This model is the XLM model trained on Wikipedia text in 100 languages. The preprocessing included tokenization with byte-pair-encoding. See the [GitHub repo](https://github.com/facebookresearch/XLM#the-17-and-100-languages) and the [associated paper](https://arxiv.org/pdf/1911.02116.pdf) for further details on the training data and training procedure.
[Conneau et al. (2020)](https://arxiv.org/pdf/1911.02116.pdf) report that this model has 16 layers, 1280 hidden states, 16 attention heads, and the dimension of the feed-forward layer is 1520. The vocabulary size is 200k and the total number of parameters is 570M (see Table 7).
# Evaluation
## Testing Data, Factors & Metrics
The model developers evaluated the model on the XNLI cross-lingual classification task (see the [XNLI data card](https://huggingface.co/datasets/xnli) for more details on XNLI) using the metric of test accuracy. See the [GitHub Repo](https://arxiv.org/pdf/1911.02116.pdf) for further details on the testing data, factors and metrics.
## Results
For xlm-mlm-100-1280, the test accuracy on the XNLI cross-lingual classification task in English (en), Spanish (es), German (de), Arabic (ar), Chinese (zh) and Urdu (ur) are:
|Language| en | es | de | ar | zh | ur |
|:------:|:--:|:---:|:--:|:--:|:--:|:--:|
| |83.7|76.6 |73.6|67.4|71.7|62.9|
See the [GitHub repo](https://github.com/facebookresearch/XLM#ii-cross-lingual-language-model-pretraining-xlm) for further details.
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Technical Specifications
[Conneau et al. (2020)](https://arxiv.org/pdf/1911.02116.pdf) report that this model has 16 layers, 1280 hidden states, 16 attention heads, and the dimension of the feed-forward layer is 1520. The vocabulary size is 200k and the total number of parameters is 570M (see Table 7).
# Citation
**BibTeX:**
```bibtex
@article{lample2019cross,
title={Cross-lingual language model pretraining},
author={Lample, Guillaume and Conneau, Alexis},
journal={arXiv preprint arXiv:1901.07291},
year={2019}
}
```
**APA:**
- Lample, G., & Conneau, A. (2019). Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291.
# Model Card Authors
This model card was written by the team at Hugging Face.
# How to Get Started with the Model
More information needed. See the [ipython notebook](https://github.com/facebookresearch/XLM/blob/main/generate-embeddings.ipynb) in the associated [GitHub repo](https://github.com/facebookresearch/XLM#the-17-and-100-languages) for examples. |