File size: 12,040 Bytes
16e53c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
from make_env import GridWorldEnv
import matplotlib.pyplot as plt
import numpy as np
import itertools
import random
import concurrent.futures
# np.random.seed(0)
class Algorithm_Agent():
def __init__(self, num_categories, grid_size, grid, probs, loc):
self.num_categories = num_categories
self.grid_size = grid_size
self.grid = grid
self.probs = probs
self.loc = loc
self.current_loc = [loc[0], loc[1]]
self.path, self.path_category = self.arrange_points()
self.actions = self.plan_action()
def calculate_length(self, paths, elim_paths, prob_paths):
# 计算路径长度, 输入:所有路径paths=np.array((N, L, 2)),所有消除路径elim_paths=np.array((N, L))
lengths = np.sum(np.abs(np.array(paths[:, :-1]) - np.array(paths[:, 1:])), axis=-1) +1 # lengths=np.array((N, L-1))
motion_length = np.sum(lengths, axis=-1) + np.sum(np.abs(self.loc - paths[:, 0]), axis=-1) +1 # motion_length=np.array((N,))
cum_lengths = np.flip(np.cumsum(np.flip(lengths), axis=-1)) / 14.4 # cum_lengths=np.array((N, L-1))
# cum_lengths = np.cumsum(lengths, axis=-1)[:, ::-1] / 14.4 # cum_lengths=np.array((N, L-1))
load_length = np.sum(cum_lengths, axis=-1) - 4 * np.sum(np.array(cum_lengths) * np.array(elim_paths[:, :-1]), axis=-1) # elim_paths的最后一项不参与计算
prob_length = np.sum(np.arange(len(prob_paths[-1])) * prob_paths)# 用于提升鲁棒性,对较早收集置信度低的网格进行惩罚
return motion_length + load_length + 0.0 * prob_length
def get_elim_path(self, category_paths):
# 获取消除路径,输入:所有路径category_paths=np.array((N, L))
elim_path = np.zeros_like(category_paths)
for i in range(category_paths.shape[1]):
if i > 0:
previous_caterogy_path = category_paths[:, :i]
# 统计previous_caterogy_path中,与category_paths[i]同一类别的元素的个数
same_category_count = np.sum(previous_caterogy_path == category_paths[:, i:i+1], axis=-1)
elim_path[:, i] = (same_category_count + 1) % 4 == 0
return elim_path
def find_shortest_path(self, points):
min_path = None
min_length = float('inf')
for perm in itertools.permutations(points): # Try all permutations
length = sum(np.sum(np.abs(np.array(perm[i]) - np.array(perm[i + 1]))) for i in range(len(perm) - 1))
if length < min_length:
min_length = length
min_path = list(perm)
return min_path, min_length
def insert_point(self, path, category_path, prob_path, point, category, prob):
min_length = float('inf')
best_position = range(len(path) + 1)
# 将point插入到path的各个位置,合并为一个矩阵np.array((N, L, 2)),L为path的长度
new_path = np.zeros((len(best_position), len(path) + 1, 2))
new_category_path = np.zeros((len(best_position), len(path) + 1))
new_prob_path = np.zeros((len(best_position), len(path) + 1))
for i in range(len(best_position)):
new_path[i] = np.insert(path, best_position[i], point, axis=0)
new_category_path[i] = np.insert(category_path, best_position[i], category, axis=0)
new_prob_path[i] = np.insert(prob_path, best_position[i], prob, axis=0)
new_elim_path = self.get_elim_path(new_category_path) # 获取消除路径
# 计算路径长度
lengths = self.calculate_length(new_path, new_elim_path, new_prob_path)
min_length = np.min(lengths)
best_position = np.argmin(lengths)
return best_position, min_length
def arrange_points(self):
points_by_category = {i: [] for i in random.sample(range(self.num_categories), self.num_categories)} # 将所有点按类别分组
for x in range(self.grid_size[0]):
for y in range(self.grid_size[1]):
category = self.grid[x, y]
if category != -1:
points_by_category[category].append([x, y])
path, category_path, prob_path, rewards_his = [], [], [], []
for category, points in points_by_category.items(): # 第一轮排列,按类别处理
while points:
if len(points) >= 4:
subset = points[:4]
points = points[4:]
else:
subset = points
points = []
if len(path) == 0:
path, _ = self.find_shortest_path(subset)
category_path = [category] * len(path)
prob_path = [self.probs[point[0], point[1]] for point in path]
else:
for point in subset:
position, length = self.insert_point(path, category_path, prob_path, point, category, self.probs[point[0], point[1]])
path.insert(position, point)
category_path.insert(position, category)
prob_path.insert(position, self.probs[point[0], point[1]])
# 排列好第一轮后,再次调整顺序
# 从序列中随机剔除一个元素,然后插入到其他位置,使得路径长度最短
for i in range(1000):
index = np.random.randint(0, 144)
point = path.pop(index)
category = category_path.pop(index)
prob = prob_path.pop(index)
position, length = self.insert_point(path, category_path, prob_path, point, category, prob)
path.insert(position, point)
category_path.insert(position, category)
prob_path.insert(position, prob)
rewards_his.append(100 + 36 - length / 10)
self.cumulated_reward = rewards_his[-1]
# plt.plot(rewards_his)
# plt.show()
return path, category_path
def plan_action(self):
actions = []
for i in range(len(self.path)):
while self.current_loc[0] != self.path[i][0] or self.current_loc[1] != self.path[i][1]:
if self.current_loc[0] < self.path[i][0]:
actions.append(0)
self.current_loc = [self.current_loc[0] + 1, self.current_loc[1]]
elif self.current_loc[1] < self.path[i][1]:
actions.append(1)
self.current_loc = [self.current_loc[0], self.current_loc[1] + 1]
elif self.current_loc[0] > self.path[i][0]:
actions.append(2)
self.current_loc = [self.current_loc[0] - 1, self.current_loc[1]]
else:
actions.append(3)
self.current_loc = [self.current_loc[0], self.current_loc[1] - 1]
actions.append(4)
# print(f'actions: {actions}\n')
return actions
def adjust_grid(predictions, openmax_probs):
# 统计每个类别的数量
class_counts = np.bincount(predictions, minlength=21)
# 处理数量为1的类别
for category in range(20):
if class_counts[category] % 4 == 1:
# 找出该类别的样本
category_indices = np.where(predictions == category)[0]
if len(category_indices) == 0:
continue
# 在该类别中找出概率最小的样本
category_probs = openmax_probs[category_indices, category]
worst_idx = category_indices[np.argmin(category_probs)]
# 找出该样本在其他类别中概率最大的类别
other_probs = openmax_probs[worst_idx]
other_probs[category] = -1 # 排除当前类别
new_category = np.argmax(other_probs)
# 更新计数
class_counts[category] -= 1
class_counts[new_category] += 1
# 将其转换为新类别
predictions[worst_idx] = new_category
# 处理数量为2的类别
for category in range(20):
if class_counts[category] % 4 == 2:
# 找出所有不属于当前类别的样本索引
for j in range(2):
other_indices = np.where(predictions != category)[0]
if len(other_indices) == 0:
continue
# 在其他所有样本中找出对当前类别概率最高的样本
category_probs = openmax_probs[other_indices, category]
best_idx = other_indices[np.argmax(category_probs)]
# 更新计数
class_counts[predictions[best_idx]] -= 1
class_counts[category] += 1
# 将其转换为当前类别
predictions[best_idx] = category
# 处理数量为3的类别
for category in range(20):
if class_counts[category] % 4 == 3:
# 找出所有不属于当前类别的样本索引
other_indices = np.where(predictions != category)[0]
if len(other_indices) == 0:
continue
# 在其他所有样本中找出对当前类别概率最高的样本
category_probs = openmax_probs[other_indices, category]
best_idx = other_indices[np.argmax(category_probs)]
# 更新计数
class_counts[predictions[best_idx]] -= 1
class_counts[category] += 1
# 将其转换为当前类别
predictions[best_idx] = category
probs = openmax_probs[np.arange(144), predictions]
return predictions.reshape(12, 12), probs.reshape(12, 12)
def search_once(grid, probs, loc):
agent = Algorithm_Agent(21, (12, 12), grid, probs, loc)
return agent.actions, agent.cumulated_reward
# 使用 ProcessPoolExecutor 并行运行 40 个 search_once 函数
def search(grid, probs, loc, num_iterations=60):
with concurrent.futures.ProcessPoolExecutor(max_workers=num_iterations) as executor:
futures = [executor.submit(search_once, grid.copy(), probs.copy(), loc.copy()) for _ in range(num_iterations)]
results = [future.result() for future in concurrent.futures.as_completed(futures)]
# 选择最优的结果
# for i, result in enumerate(results):
# if i % 5 == 0:
# print(f"Iteration {i}: {result[1]}")
optim_actions, optim_reward = max(results, key=lambda x: x[1])
# 在env中测试optim_actions
env = GridWorldEnv()
cumulated_reward = 0
env.reset()
env.grid, env.loc = grid.copy(), loc.copy()
for action in optim_actions:
obs, reward, done, truncated, info = env.step(action)
cumulated_reward += reward
print(f'Final reward: {cumulated_reward}')
return optim_actions
if __name__ == "__main__":
for _ in range(1):
test_env = GridWorldEnv()
test_env.reset()
grid, loc = test_env.grid.copy(), test_env.loc.copy()
pred_grid, pred_loc = test_env.grid.copy(), test_env.loc.copy()
loc_1, loc_2, loc_3, loc_4, loc_5 = random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2)
a, b, c, d, e = pred_grid[loc_1[0], loc_1[1]], pred_grid[loc_2[0], loc_2[1]], pred_grid[loc_3[0], loc_3[1]], pred_grid[loc_4[0], loc_4[1]], pred_grid[loc_5[0], loc_5[1]]
pred_grid[loc_1[0], loc_1[1]], pred_grid[loc_2[0], loc_2[1]], pred_grid[loc_3[0], loc_3[1]], pred_grid[loc_4[0], loc_4[1]], pred_grid[loc_5[0], loc_5[1]] = b, e, a, c, d
search(grid, loc, grid, loc) # 使用5格混淆的grid进行搜索
|