File size: 12,040 Bytes
16e53c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from make_env import GridWorldEnv
import matplotlib.pyplot as plt
import numpy as np
import itertools
import random
import concurrent.futures
# np.random.seed(0)

class Algorithm_Agent():
    def __init__(self, num_categories, grid_size, grid, probs, loc):
        self.num_categories = num_categories
        self.grid_size = grid_size
        self.grid = grid
        self.probs = probs
        self.loc = loc
        self.current_loc = [loc[0], loc[1]]
        self.path, self.path_category = self.arrange_points()
        self.actions = self.plan_action()
    
    def calculate_length(self, paths, elim_paths, prob_paths):
        # 计算路径长度, 输入:所有路径paths=np.array((N, L, 2)),所有消除路径elim_paths=np.array((N, L))
        lengths = np.sum(np.abs(np.array(paths[:, :-1]) - np.array(paths[:, 1:])), axis=-1)   +1 # lengths=np.array((N, L-1))
        motion_length = np.sum(lengths, axis=-1) + np.sum(np.abs(self.loc - paths[:, 0]), axis=-1)   +1 # motion_length=np.array((N,))
        cum_lengths = np.flip(np.cumsum(np.flip(lengths), axis=-1)) / 14.4  # cum_lengths=np.array((N, L-1))
        # cum_lengths = np.cumsum(lengths, axis=-1)[:, ::-1] / 14.4  # cum_lengths=np.array((N, L-1))
        load_length = np.sum(cum_lengths, axis=-1) - 4 * np.sum(np.array(cum_lengths) * np.array(elim_paths[:, :-1]), axis=-1)  # elim_paths的最后一项不参与计算
        prob_length = np.sum(np.arange(len(prob_paths[-1])) * prob_paths)# 用于提升鲁棒性,对较早收集置信度低的网格进行惩罚
        
        return motion_length + load_length + 0.0 * prob_length


    def get_elim_path(self, category_paths):
        # 获取消除路径,输入:所有路径category_paths=np.array((N, L))
        elim_path = np.zeros_like(category_paths)
        for i in range(category_paths.shape[1]):
            if i > 0:
                previous_caterogy_path = category_paths[:, :i]
                # 统计previous_caterogy_path中,与category_paths[i]同一类别的元素的个数
                same_category_count = np.sum(previous_caterogy_path == category_paths[:, i:i+1], axis=-1)
                elim_path[:, i] = (same_category_count + 1) % 4 == 0

        return elim_path


    def find_shortest_path(self, points):
        min_path = None
        min_length = float('inf')
        for perm in itertools.permutations(points):  # Try all permutations
            length = sum(np.sum(np.abs(np.array(perm[i]) - np.array(perm[i + 1]))) for i in range(len(perm) - 1))
            if length < min_length:
                min_length = length
                min_path = list(perm)
        return min_path, min_length

    def insert_point(self, path, category_path, prob_path, point, category, prob):
        min_length = float('inf')
        best_position = range(len(path) + 1)
        # 将point插入到path的各个位置,合并为一个矩阵np.array((N, L, 2)),L为path的长度
        new_path = np.zeros((len(best_position), len(path) + 1, 2))
        new_category_path = np.zeros((len(best_position), len(path) + 1))
        new_prob_path = np.zeros((len(best_position), len(path) + 1))
        for i in range(len(best_position)):
            new_path[i] = np.insert(path, best_position[i], point, axis=0)
            new_category_path[i] = np.insert(category_path, best_position[i], category, axis=0)
            new_prob_path[i] = np.insert(prob_path, best_position[i], prob, axis=0)
        new_elim_path = self.get_elim_path(new_category_path)  # 获取消除路径
        # 计算路径长度
        lengths = self.calculate_length(new_path, new_elim_path, new_prob_path)
        min_length = np.min(lengths)
        best_position = np.argmin(lengths)

        return best_position, min_length

    def arrange_points(self):
        points_by_category = {i: [] for i in random.sample(range(self.num_categories), self.num_categories)}  # 将所有点按类别分组
        for x in range(self.grid_size[0]):
            for y in range(self.grid_size[1]):
                category = self.grid[x, y]
                if category != -1:
                    points_by_category[category].append([x, y])

        path, category_path, prob_path, rewards_his = [], [], [], []
        for category, points in points_by_category.items():  # 第一轮排列,按类别处理
            while points:
                if len(points) >= 4:
                    subset = points[:4]
                    points = points[4:]
                else:
                    subset = points
                    points = []
                if len(path) == 0:
                    path, _ = self.find_shortest_path(subset)
                    category_path = [category] * len(path)
                    prob_path = [self.probs[point[0], point[1]] for point in path]
                else:
                    for point in subset:
                        position, length = self.insert_point(path, category_path, prob_path, point, category, self.probs[point[0], point[1]])
                        path.insert(position, point)
                        category_path.insert(position, category)
                        prob_path.insert(position, self.probs[point[0], point[1]])          

        # 排列好第一轮后,再次调整顺序
        # 从序列中随机剔除一个元素,然后插入到其他位置,使得路径长度最短
        for i in range(1000):
            index = np.random.randint(0, 144)
            point = path.pop(index)
            category = category_path.pop(index)
            prob = prob_path.pop(index)
            position, length = self.insert_point(path, category_path, prob_path, point, category, prob)
            path.insert(position, point)
            category_path.insert(position, category)
            prob_path.insert(position, prob)
            rewards_his.append(100 + 36 - length / 10)
        self.cumulated_reward = rewards_his[-1]
        # plt.plot(rewards_his)
        # plt.show()
        return path, category_path
    
    def plan_action(self):
        actions = []
        for i in range(len(self.path)):
            while self.current_loc[0] != self.path[i][0] or self.current_loc[1] != self.path[i][1]:
                if self.current_loc[0] < self.path[i][0]:
                    actions.append(0)
                    self.current_loc = [self.current_loc[0] + 1, self.current_loc[1]]
                elif self.current_loc[1] < self.path[i][1]:
                    actions.append(1)
                    self.current_loc = [self.current_loc[0], self.current_loc[1] + 1]
                elif self.current_loc[0] > self.path[i][0]:
                    actions.append(2)
                    self.current_loc = [self.current_loc[0] - 1, self.current_loc[1]]
                else:
                    actions.append(3)
                    self.current_loc = [self.current_loc[0], self.current_loc[1] - 1]
            actions.append(4)
        # print(f'actions: {actions}\n')
        return actions

def adjust_grid(predictions, openmax_probs):

    # 统计每个类别的数量
    class_counts = np.bincount(predictions, minlength=21)
    
    # 处理数量为1的类别
    for category in range(20):
        if class_counts[category] % 4 == 1:
            # 找出该类别的样本
            category_indices = np.where(predictions == category)[0]
            if len(category_indices) == 0:
                continue
            
            # 在该类别中找出概率最小的样本
            category_probs = openmax_probs[category_indices, category]
            worst_idx = category_indices[np.argmin(category_probs)]
            
            # 找出该样本在其他类别中概率最大的类别
            other_probs = openmax_probs[worst_idx]
            other_probs[category] = -1  # 排除当前类别
            new_category = np.argmax(other_probs)
            
            # 更新计数
            class_counts[category] -= 1
            class_counts[new_category] += 1
            # 将其转换为新类别
            predictions[worst_idx] = new_category

    # 处理数量为2的类别
    for category in range(20):
        if class_counts[category] % 4 == 2:
            # 找出所有不属于当前类别的样本索引
            for j in range(2):
                other_indices = np.where(predictions != category)[0]
                if len(other_indices) == 0:
                    continue
                
                # 在其他所有样本中找出对当前类别概率最高的样本
                category_probs = openmax_probs[other_indices, category]
                best_idx = other_indices[np.argmax(category_probs)]
                
                # 更新计数
                class_counts[predictions[best_idx]] -= 1
                class_counts[category] += 1
                # 将其转换为当前类别
                predictions[best_idx] = category

    # 处理数量为3的类别
    for category in range(20):
        if class_counts[category] % 4 == 3:
            # 找出所有不属于当前类别的样本索引
            other_indices = np.where(predictions != category)[0]
            if len(other_indices) == 0:
                continue
            
            # 在其他所有样本中找出对当前类别概率最高的样本
            category_probs = openmax_probs[other_indices, category]
            best_idx = other_indices[np.argmax(category_probs)]
            
            # 更新计数
            class_counts[predictions[best_idx]] -= 1
            class_counts[category] += 1
            # 将其转换为当前类别
            predictions[best_idx] = category
    
    probs = openmax_probs[np.arange(144), predictions]

    return predictions.reshape(12, 12), probs.reshape(12, 12)

def search_once(grid, probs, loc):
    agent = Algorithm_Agent(21, (12, 12), grid, probs, loc)
    return agent.actions, agent.cumulated_reward

# 使用 ProcessPoolExecutor 并行运行 40 个 search_once 函数
def search(grid, probs, loc, num_iterations=60):
    with concurrent.futures.ProcessPoolExecutor(max_workers=num_iterations) as executor:
        futures = [executor.submit(search_once, grid.copy(), probs.copy(), loc.copy()) for _ in range(num_iterations)]
        results = [future.result() for future in concurrent.futures.as_completed(futures)]

    # 选择最优的结果
    # for i, result in enumerate(results):
    #     if i % 5 == 0:
    #         print(f"Iteration {i}: {result[1]}")
    optim_actions, optim_reward = max(results, key=lambda x: x[1])

    # 在env中测试optim_actions
    env = GridWorldEnv()
    cumulated_reward = 0
    env.reset()
    env.grid, env.loc = grid.copy(), loc.copy()
    for action in optim_actions:
        obs, reward, done, truncated, info = env.step(action)
        cumulated_reward += reward
    print(f'Final reward: {cumulated_reward}')

    return optim_actions


if __name__ == "__main__":
    for _ in range(1):
        test_env = GridWorldEnv()
        test_env.reset()
        grid, loc = test_env.grid.copy(), test_env.loc.copy()
        pred_grid, pred_loc = test_env.grid.copy(), test_env.loc.copy()
        loc_1, loc_2, loc_3, loc_4, loc_5 = random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2)
        a, b, c, d, e = pred_grid[loc_1[0], loc_1[1]], pred_grid[loc_2[0], loc_2[1]], pred_grid[loc_3[0], loc_3[1]], pred_grid[loc_4[0], loc_4[1]], pred_grid[loc_5[0], loc_5[1]]
        pred_grid[loc_1[0], loc_1[1]], pred_grid[loc_2[0], loc_2[1]], pred_grid[loc_3[0], loc_3[1]], pred_grid[loc_4[0], loc_4[1]], pred_grid[loc_5[0], loc_5[1]] = b, e, a, c, d
        search(grid, loc, grid, loc)  # 使用5格混淆的grid进行搜索